scholarly journals Fumigant Alternatives to Methyl Bromide for Polyethylene-mulched

HortScience ◽  
1997 ◽  
Vol 32 (7) ◽  
pp. 1208-1211 ◽  
Author(s):  
Salvadore J. Locascio ◽  
James P. Gilreath ◽  
D.W. Dickson ◽  
Thomas A. Kucharek ◽  
J.P. Jones ◽  
...  

Tomato (Lycopersicon esculentum Mill.) was grown to evaluate various chemicals as possible alternatives to methyl bromide soil fumigation. Due to a combination of weeds, nematodes, and soil fungi, the use of a broad-spectrum fumigant has been essential for economical tomato production in Florida. Methyl bromide (MBr) and combinations of MBr with chloropicrin (Pic) are the fumigants of choice for most growers using polyethylene mulch culture. In 1991, MBr was allegedly associated with stratospheric ozone depletion. The U.S. Environmental Protection Agency has since mandated a phaseout of MBr for soil fumigation in the United States by the year 2001. At three locations in Florida, alternative soil fumigants were evaluated, including soil injected 98% MBr—2% Pic at 450 kg·ha-1, 67% MBr—33% Pic (390 kg·ha-1), Pic (390 kg·ha-1), dichloropropene + 17% Pic (1,3-D + Pic) at 327 L·ha-1, and metam-sodium (935 L·ha-1). Also, metam-sodium and tetrathiocarbonate (1870 L·ha-1) were applied by drip irrigation. Dazomet (450 kg·ha-1) was surface applied and soil incorporated. Pebulate (4.5 kg·ha-1) was soil incorporated with some treatments. Pic and 1,3-D + Pic treatments provided good to moderate control of nematodes and soil fungi except in one of the six studies, in which nematode control with 1,3-D was moderate to poor. Nutsedge densities were suppressed by addition of pebulate. Tomato fruit yields with 1,3-D + Pic + pebulate and with Pic + pebulate at the three sites ranged from 85% to 114%, 60% to 95%, and l01% to 119%, respectively, of that obtained with MBr treatments. Pest control and crop yield were lower with treatments other than the above pebulate-containing or MBr-containing treatments. These studies indicate that no one alternative pesticide can provide the consistent broad-spectrum control provided by MBr. Chemical names used: trichloronitromethane (chloropicrin); 1,3-dichloropropene (1,3-D); sodium N-methyldithiocarbamate (metam-sodium); sodium tetrathiocarbonate (tetrathiocarbonate); 3,5-dimethyl-(2H)-tetrahydro-l,3,5-thiadiazine-2-thione (dazomet); S-propyl butyl(ethyl)thiocarbamate (pebulate).

HortScience ◽  
1996 ◽  
Vol 31 (4) ◽  
pp. 568e-568
Author(s):  
S.J. Locascio ◽  
J.P. Gilreath ◽  
D.W. Dickson ◽  
T.A. Kucharek ◽  
J.P. Jones ◽  
...  

Tomato (Lycopersicon esculentum Mill.) was grown to evaluate various chemicals as possible alternatives to methyl bromide as a soil fumigant. Due to pest pressures from weeds, nematodes, and soil fungi, the use of a broad-spectrum fumigant is essential for economical tomato production. Methyl bromide (MBr) is the fumigant of choice for most growers using polyethylene mulch culture. In 1991, MBr was identified to be in a group of chemicals allegedly responsible for depletion of the stratospheric ozone layer. The U.S. Environmental Protection Agency (EPA) has since called for a phaseout of MBr by the year 2001. At several locations in Florida, alternative soil fumigants were evaluated including 98% MBr-2% chloropicrin (Pic) at 450 kg·ha–1, 67% MBr 33% –Pic (392 kg·ha–1), Pic (390 kg·ha–1), 1,3-dichloropropene + 17% Pic (1,3-D+C17) at 327 L·ha–1, and metham sodium (935 L·ha–1). Metham sodium was also applied by drip irrigation as well as enzone (1870 L·ha–1). Dazomet (448 kg·ha–1) was surface applied and incorporated. Pebulate (4.5 kg·ha–1) was incorporated with some treatments. Pic and 1,3-D+C17 treatments provided control of nematodes and soil fungi. With the addition of pebulate, some nutsedge control also was obtained. Tomato fruit yields with 1,3-D+C17 + pebulate and with Pic + pebulate ranged from 86% to 100% of that obtained with MBr treatments. Pest control and crop production were lower with the other treatments than with the above combinations and with MBr. These studies indicate that no one pesticide can provide the broad spectrum control provided by MBr.


HortScience ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 525b-525 ◽  
Author(s):  
S.J. Locascio ◽  
D.W. Dickson

In past work, dichloropropene + 17% Pic (1,3-D + Pic) at 327 L·ha–1 plus pebulate provided good control of nematode, soil fungi, and nutsedge in mulched tomato (Lycopersicon esculentum Mill.) and is considered the best alternative for methyl bromide (MBr) + chloropicrin (Pic), which is scheduled for phase-out in the United States by Jan. 2001. Metam-sodium did not provide acceptable pest control. In the present study, metam-Na (295 L·ha–1 combined with Pic (168 kg·ha–1) + 4.5 kg·ha–1 pebulate, and 1,3-D + 35% Pic at 168 and 225 L·ha–1 + pebulate were compared to MBr-Pic (98-2% at 345 kg·ha–1 and 67-33% at 505 kg·ha–1). Fumigants were injected into the bed except metam-Na and pebulate were surface-applied and incorporated and drip tubing and mulch were applied. Marketable yields with MBr-Pic, 225 L·ha–1 1,3-D + Pic, and metam-Na + Pic were higher than with the check. Yields with metam-Na alone or with additional water before transplanting were similar to the check. Nutsedge was controlled with MBr-Pic and all treatments with pebulate. Nematode root-gall ratings were high on tomato grown without fumigants (8.9 rating on a scale of 0 to 10 with 0 = no galling), low with MBr-Pic (0.33), and intermediate with all other treatments (2.2 to 5.5) except with 168 L·ha–1 1-3-D + Pic (8.3). This study indicates that metam-Na + Pic + pebulate also is a possible alternative to MBr-Pic for tomato.


1970 ◽  
Vol 10 (45) ◽  
pp. 493 ◽  
Author(s):  
JW Meagher ◽  
PT Jenkins

In a field experiment with strawberries, pre-plant treatments with broad-spectrum fumigants methyl bromide-chloropicrin (450 kg/ha) or methyl isothiocyanate-dichloropropene (500 l/ha) (and 300 l/ha) controlled wilt caused by Verticillium dahliae Kleb and resulted in increased yields. Soil fumigation with the nematicide ethylene dibromidz (105 l/ha) also improved yields. It controlled the root-knot nematode (Meloidogyne hapla Chitwood), delayed the onset of wilt symptoms and reduced the severity of disease. This indicated a nematode-fungus interaction and is the first report of a Meloidogyne-Verticillium interaction in strawberry.


HortScience ◽  
2000 ◽  
Vol 35 (3) ◽  
pp. 519A-519
Author(s):  
Chad Hutchinson

The economics of pesticide production and registration has limited the number of pesticides registered for use in minor crops relative to agronomic crops. Current regulations such as the Food Quality Protection Act may further reduce the number of efficacious compounds registered for use on minor crops. Traditionally, the lack of registered pesticides for minor crops has been offset by soil fumigation. However, methyl bromide use is scheduled for phase-out in the United States by 2005, leaving a pest control vacuum in some crops. Loss of methyl bromide has stimulated research into the use of other soil fumigants for weed control. Methyl bromide, methyl iodide, propargyl bromide, 1,3-dichloropropene, and metham sodium have been tested alone and in combination with chloropicrin in laboratory experiments to determine their efficacy against Cyperus esculentus L (yellow nutsedge) tubers. All the fumigants controlled nutsedge equal to or better than methyl bromide and resulted in synergistic control when combined with chloropicrin. Although excellent weed control can be achieved with all the fumigants in the laboratory, weed control in the field with the same fumigant may result in poor or no control. Further research is necessary to optimize the field application of the remaining fumigants to maximize pest control. In the near future, to achieve the broad-spectrum pest control obtained with methyl bromide, growers will need to rely on multiple control strategies. The most promising replacement program for broad-spectrum pest control includes dichloropropene/chloropicrin fumigation followed by a herbicide program or mechanical weed control. To control problem weeds that are not controlled with the in-season herbicide program, a chemical fallow program should be instituted in the off-season to reduce weed pressure during the cropping season.


Plant Disease ◽  
1997 ◽  
Vol 81 (8) ◽  
pp. 885-891 ◽  
Author(s):  
Donald R. Sumner ◽  
Ronald D. Gitaitis ◽  
J. Danny Gay ◽  
Doyle A. Smittle ◽  
Bryan W. Maw ◽  
...  

Populations of soil fungi from fields planted to sweet onion were assayed on selective media. In pathogenicity tests, Rhizoctonia solani AG-4, Pythium irregulare, and Phoma terrestris were the fungi most virulent on onion seedlings. Plots were fumigated with methyl bromide (MBR), chloropicrin (CP), MBR + CP (67% + 33%), metam sodium, 1,3,-dichloropropene (1,3-D), or 1,3-D + 17% CP in four field experiments in 2 years. Sweet onion was transplanted or direct seeded in October or November and harvested in April or May. MBR + CP and CP were effective in reducing populations of Phoma terrestris, Pythium spp., Fusarium spp., and R. solani AG-4 in soil. Metam-sodium and 1,3-D + 17% CP were less efficacious, and MBR and 1,3-D were ineffective. There were no differences in the percentage of bulbs with decay at harvest or after curing among treatments. Increased yield of marketable bulbs was associated with control of soilborne pathogenic fungi. In fields continuously cropped to onion, decreased yield was primarily associated with control of pink-root induced by Phoma terrestris, and P. terrestris was identified in soil from 74% of the fields assayed.


HortScience ◽  
2004 ◽  
Vol 39 (7) ◽  
pp. 1707-1715 ◽  
Author(s):  
Husein A. Ajwa ◽  
Thomas Trout

Strawberry (Fragaria ×ananassa Duchesne) is a high-value cash crop that benefits from preplant soil fumigation with methyl bromide (MB) and chloropicrin (CP). Methyl bromide will be banned in the U.S. and other developed countries by 2005 for most uses. Potential alternative chemicals to replace methyl bromide for soil fumigation include CP, 1,3-dichloropropene (1,3-D), and methyl isothiocyanate (MITC) generators such as metam sodium (MS). Commercial formulations of these fumigants applied singly and in combination through drip irrigation systems were evaluated at two sites for three consecutive growing seasons as alternatives to MB:CP fumigation for strawberry production. A mixture of 1,3-D and CP was shank injected as Telone C35 (62% 1,3-D and 35% CP) at 374 kg·ha-1. An emulsifiable concentrate (EC) formulation of 1,3-D and CP was applied as InLine (60% 1,3-D and 32% CP) at 236 and 393 L·ha-1 through drip irrigation systems in three amounts of irrigation water (26, 43, and 61 L·m-2). Chloropicrin (CP EC, 96%) was drip applied singly at 130 or 200 L·ha-1. Metam sodium was applied singly as Vapam HL in three amounts of water and in combination with InLine and CP EC. Strawberry growth, fruit yields, disease pressure, and weed biomass were compared to an untreated control and shank injection with MB:CP mixture (67:33) at 425 kg·ha-1. For soils high in pathogen populations, fruit yield from the untreated plots was 34% to 50% relative to the MB:CP treatment. The greatest (95% to 110%) yields relative to MB:CP were in the high rates of the InLine treatments. Yields from simultaneous drip fumigation with a combination of Vapam HL and InLine or CP EC were less (67% to 79%) than yields from shank fumigation with MB:CP due to 1,3-D and CP hydrolysis reactions with Vapam HL or the generated MITC in the irrigation water that reduced the efficacy of these combinations to control soilborne pathogens. Application of reduced rates of InLine or CP EC followed 6 days later with reduced rates of Vapam HL controlled soil borne pathogens and weeds and produced the greatest fruit yield relative to all treatments. Chemical names used: 1,3-dichloropropene (1,3-D); methyl bromide (MB); trichloronitromethane (chloropicrin, CP); sodium methyldithiocarbamate (metam sodium); methyl isothiocyanate (MITC).


1987 ◽  
Vol 1 (2) ◽  
pp. 186-188 ◽  
Author(s):  
W. Franklin Congleton ◽  
Anne M. Vancantfort ◽  
Edward M. Lignowski

Imazaquin (Scepter) is a new, broad spectrum herbicide that is being marketed under the trademark Scepter® herbicide by American Cyanamid Co., Princeton, NJ. It can be applied preplant incorporated (PPI), preemergence (PE) or over-the-top postemergence (POST) in soybean. Crop tolerance is excellent with all methods of application. Imazaquin was tested in the United States in 1984 and 1985 under an Experimental Use Permit (EUP). Section 18 Emergency Exemptions also were granted by the Environmental Protection Agency (EPA) in 1985 for control of sicklepod (Cassia obtusifolia) in five southern states. Imazaquin was registered by the EPA for use in the United States on soybean, in March, 1986, and was sold in 23 states that year. Marketing in four additional states in 1987 was approved by the EPA in October, 1986.


2008 ◽  
Vol 18 (4) ◽  
pp. 705-713 ◽  
Author(s):  
Olha Sydorovych ◽  
Charles D. Safley ◽  
Rob M. Welker ◽  
Lisa M. Ferguson ◽  
David W. Monks ◽  
...  

Partial budget analysis was used to evaluate soil treatment alternatives to methyl bromide (MeBr) based on their efficacy and cost-effectiveness in the production of tomato (Solanum lycopersicum). The analysis was conducted for the mountain tomato production region based on 6 years of field test data collected in Fletcher, NC. Fumigation alternatives evaluated included 61.1% 1,3-dichloropropene + 34.7% chloropicrin (Telone-C35™), 60.8% 1,3-dichloropropene + 33.3% chloropicrin (InLine), 99% chloropicrin (Chlor-o-pic), 94% chloropicrin (TriClor EC), 42% metam sodium (4.26 lb/gal a.i., Vapam), and 50% iodomethane + 50% chloropicrin (Midas). The MeBr formulation was 67% methyl bromide and 33% chloropicrin (Terr-O-Gas). Chloropicrin applied at 15 gal/acre provided the greatest returns with an additional return of $907/acre relative to MeBr. Telone-C35 provided an additional return of $848/acre and drip-applied metam sodium provided an additional return of $137/acre. The return associated with broadcast applied metam sodium was about equal to the estimated return a grower would receive when applying MeBr. Fumigating with a combination of chloropicrin and metam sodium; shank-applied chloropicrin at 8 gal/acre; drip-applied chloropicrin, Midas, or InLine; and the nonfumigated soil treatment all resulted in projected losses of $156/acre, $233/acre, $422/acre, $425/acre, $604/acre, and $2133/acre, respectively, relative to MeBr. Although technical issues currently associated with some of the MeBr alternatives may exist, results indicate that there are economically feasible fumigation alternatives to MeBr for production of tomatoes in North Carolina.


HortScience ◽  
1999 ◽  
Vol 34 (5) ◽  
pp. 839-845 ◽  
Author(s):  
Douglas V. Shaw ◽  
Kirk D. Larson

Yield for annual California strawberry (Fragaria ×ananassa Duch.) production systems in soils treated with combinations of methyl bromide–chloropicrin (MB:CP) were compared with four alternative soil treatment systems using meta-analysis. Studies represent 11 production seasons, and were conducted at three distinct locations in California. Fumigation with mixtures of methyl bromide (MB) and chloropicrin (CP) increased yield significantly compared with any and all alternatives lacking MB. In a combined analysis of 45 studies, fumigation with MB:CP compounds increased yield an average of 94.4% (d+ = 2.874 ± 0.098) compared with yields for plants in nonfumigated (NF) soils. Further, the effect of MB:CP fumigation increased over the first three strawberry cultivation cycles: MB:CP–fumigated soils provided a 59.2% (d+ = 2.166 ± 0.146) yield advantage when one cycle of fumigation was omitted, a 100.2% (d+ = 3.000 ± 0.143) advantage when two cycles were omitted, and a 148.4% (d+ = 6.201 ± 0.348) yield advantage when three or more cycles of MB:CP were omitted. In a combined analysis that included 34 studies, soil fumigation with MB:CP conferred a 9.6% (d+ = 0.751 ± 0.087) yield advantage over fumigation with CP alone. Soils treated with MB:CP yielded 6.8% (d+ = 0.437 ± 0.114) more fruit than those treated with very high rates of CP (336–396 kg·ha–1), and 15.4% (d+ = 1.190 ± 0.134) more than soils treated with commercially realistic rates (168–224 kg·ha–1). Similar to the comparison using NF soils, the efficacy of very high rates of CP appeared to diminish over cycles of strawberry cultivation; MB:CP increased yield 2.2% (d+ = 0.043 ± 0.162) in the first CP production cycle, 10.6% (d+ = 0.588 ± 0.174) and 13.7% (d+ = 2.054 ± 0.401) in the following two cycles. Combinations of dichloropropene (DP) and CP were no more effective than were lower rates of CP alone, and MB:CP conferred a 14.4% (d+ = 0.962 ± 0.162) yield advantage over mixtures of DP:CP. Mixtures of MB:CP increased yield 29.8% (d+ = 3.199 ± 0.287) compared with metam sodium (MS). The standardized effect was similar when comparing MB:CP combinations with either MS or NF soils, suggesting little effect of MS on the yield response. Chemical names used: trichloronitromethane (chloropicrin); 1,3-dichloropropene (dichloropropene); sodium N-methyldithiocarbamate (metam sodium).


2013 ◽  
Vol 27 (3) ◽  
pp. 580-589 ◽  
Author(s):  
Pratap Devkota ◽  
Jason K. Norsworthy ◽  
Ronald Rainey

Methyl bromide (MeBr), a widely used soil fumigant in tomato production, has been banned for ordinary agricultural uses. In the absence of MeBr, a viable alternative is imperative for weed control and prevention of economic loss in tomato production. A field study was conducted in the summers of 2010 and 2011 at Fayetteville, AR, to compare the efficacy and economics of herbicide programs consisting of pre-transplant followed by (fb) post-transplant herbicides in low-density polyethylene (LDPE) mulched tomato. Pre-transplant imazosulfuron at 0.112, 0.224, and 0.336 kg ai ha−1andS-metolachlor at 1.6 kg ai ha−1were fb a post-transplant mixture of trifloxysulfuron plus halosulfuron at 0.008 and 0.027 kg ai ha−1at 4 wk after transplant (WATP). The standard MeBr treatment (2:1 mixture of MeBr plus chloropicrin at 390 kg ai ha−1), weed-free (hand weeding) control, and nontreated weedy check were used for comparison. Pre-transplantS-metolachlor fb post-transplant herbicides controlled Palmer amaranth ≥ 89%, large crabgrass ≥ 88%, and yellow nutsedge ≥ 90%, which was comparable to the control with MeBr. Tomato recovered the injury (≤ 19% at 6 WATP) from post-transplant herbicides in the later weeks.S-metolachlor–containing herbicide programs yielded marketable tomato fruit comparable to the yield with MeBr. Economic evaluation of the herbicide programs demonstrated a net return of $3,758.50 ha−1from theS-metolachlor–containing herbicide program in LDPE-mulched tomato. Likewise, this herbicide program showed minimum loss of ≤ $671.61 ha−1in net return relative to MeBr. In conclusion, a herbicide program consisting of pre-transplantS-metolachlor fb post-transplant trifloxysulfuron plus halosulfuron is a viable alternative to MeBr for weed control and marketable yield in LDPE-mulched tomato production.


Sign in / Sign up

Export Citation Format

Share Document