The impact of stubble management on the incidence of crown rot of wheat

1989 ◽  
Vol 29 (1) ◽  
pp. 91 ◽  
Author(s):  
BA Summerell ◽  
LW Burgess ◽  
TA Klein

The influence of 3 stubble management practices, stubble retention, stubble incorporation and stubble burning, on the incidence of crown rot of wheat (Triticum aestivum L.) caused by Fusarium graminearum Schwabe Group 1, and on plant development and grain yield was examined. The incidence of disease (percentage plants affected) was assessed in a susceptible (cv. Sunstar) and moderately resistant cultivar (cv. Suneca) in 1986. In 1987 Sunstar was planted into stubble of the 2 cultivars to assess the influence of host resistance on disease carryover. Crown rot was highest in the stubble retention plots (81% incidence in 1986 and 59% in 1987), whereas stubble burning decreased disease incidence in both years, with the reduction being greater in the second year (47% and 16%). Stubble incorporation was ineffective in reducing disease levels (76% and 53% in years 1 and 2). The incidence of crown rot did not differ in the 2 cultivars. At the harvest sampling in 1987 there were no differences in crown rot incidence in plants sown into stubble of the 2 cultivars. Grain yield did not differ significantly between treatments, but early season plant dry weight was reduced in the retained plots. Grain protein levels were reduced (P< 0.05) in the stubble burnt plots.


Agronomy ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 867
Author(s):  
John P. Thompson ◽  
Timothy G. Clewett

In two experiments on a farm practicing conservation agriculture, the grain yield of a range of wheat cultivars was significantly (p < 0.001) negatively related to the post-harvest population densities of Pratylenchus thornei in the soil profile to 45 cm depth. In a third and fourth experiment with different rotations, methyl bromide fumigation significantly (p < 0.05) decreased (a) a low initial population density of P. thornei in the soil profile to 90 cm depth and (b) a high initial population of P. thornei to 45 cm depth, and a medium level of the crown rot fungus, Fusarium pseudograminearum, at 0–15 cm depth to a low level. For a range of wheat and durum cultivars, grain yield and response to fumigation were highly significantly (p < 0.001) related to (a) the P. thornei tolerance index of the cultivars in the third experiment, and (b) to both the P. thornei tolerance index and the crown rot resistance index in the fourth experiment. In the latter, grain yield was significantly (p < 0.001) positively related to biomass at anthesis and negatively related to percentage whiteheads at grain fill growth stage. One barley cultivar was more tolerant to both diseases than the wheat and durum cultivars. Crop rotation, utilizing crop cultivars resistant and tolerant to both P. thornei and F. pseudograminearum, is key to success for conservation farming in this region.



2017 ◽  
Vol 35 (0) ◽  
Author(s):  
J. IQBAL ◽  
H.A. RAUF ◽  
A.N. SHAH ◽  
B. SHAHZAD ◽  
M.A Bukhari

ABSTRACT Selection of tree species under agroforestry systems is crucial to sustain the productivity of a crop. In present study, allelopathic effects of the leaf litters of 5 trees named Rose wood (Dalbergia sissoo), Guava (Pisidium guajava), Eucalyptus (Eucalyptus camaldulensis), Sacred fig (Ficus religiosa) and Jaman (Syzygium cumini) species on wheat growth and yield was examined. Leaf litter of each tress species was mixed in soil with two doses @ 100 and 200 g of leaves of each species per pot. Higher shoot length, shoot dry weight, number of spikelets per spike and biological yield were recorded in 200 g sun dried Jaman (Syzygium cumini) leaves. Total number of tillers per plant and number of ears per plant were higher under the application of Eucalyptus camaldulensis leaves (200 g sun dried) as compared to other treatments. Spike length, grain yield per pot, number of grains per pot and harvest index were maximum in 200 g sun-dried Sacred fig (Ficu sreligiosa) leaves. Majority of the parameters were promoted at lower doses of leaves per pot, however, at higher doses they started inhibiting the growth and grain yield of wheat.



2021 ◽  
Vol 27 (1) ◽  
pp. 51-66
Author(s):  
Haseeb Ahmad

An experiment entitled: Maize yield as affected by methods of tillage and weed control methods was conducted at Agronomy Research Farms, The University of Agriculture Peshawar during summer 2016. The study was conducted in randomized complete block design (RCBD) with split plot arrangement having four replications. Tillage practices 1) Chisel plough + rotavator 2) Mouldboard plough + rotavator 3) Cultivator + rotavator and 4) Rotavator were assigned to main plots. Weed management practices included 1) Control, 2) Hoeing 15 days after sowing 3) Hoeing 15 and 30 days after sowing 4) Hoeing 15, 30 and 45 days after sowing, and 4) Herbicide (nicosulfuron) were kept into the subplots. The results revealed that chisel plough + rotavator has significantly reduced weeds m-2 (122, 101 and 125 weeds m-2), weeds fresh weight (19.73 g m-2, 116.35 g m-2 and 252.56 g m-2) and weeds dry weight (6.83 g m-2, 38.69 g m-2 and 80.61 g m-2) at 30, 45 and 60 days after sowing, respectively. The operation of chisel plough + rotavator has produced tallest plants (221.22 cm) with maximum grain rows ear-1 (16), grain yield (3586 kg ha-1) and shelling percentage (78.14%). Among weed control methods, hoeing 15, 30 and 45 days after sowing revealed maximum plant height (226.41 cm), grain rows ear-1 (16), grain yield (3604 kg ha-1) and shelling percentage (79.11%). All weed control methods have showed significant reduction in weeds m-2, weeds fresh weight and weeds dry weight. Interaction was also found significant for weeds m-2 at 60 DAS and grain yield of maize. Lowest weeds (56 weeds m-2) at 60 DAS and highest grain yield (4569 kg ha-1) was recorded when seedbed was prepared with chisel plough + rotavator with 3 hoeings (hoeing 15, 30 and 45 days after sowing). It is concluded that treatment of chisel plough + rotavator and hoeing 15, 30 and 45 days after sowing has significantly produced maximum grain yield of maize crop.



2010 ◽  
Vol 56 (No. 5) ◽  
pp. 218-227 ◽  
Author(s):  
A. Madani ◽  
A. Shirani-Rad ◽  
A. Pazoki ◽  
G. Nourmohammadi ◽  
R. Zarghami ◽  
...  

The experiments were laid out to understand the mechanisms causing yield limitations imposed by post-anthesis water and nitrogen deficiencies in plants with modified source-sink ratios. Two soil-water regimes were allotted to the main plots. At anthesis, three levels of N were applied: none, 25% and 50% of total the N supply. Spike-halving caused reduction in grain yield at both water regimes and all N supply levels, showing that the reduction in grain number can not be compensated by a higher individual grain weight. Sink reduction by trimming 50% of the spikelets reduced grain number per ear by 38.5% and increased individual grain weight by 12.0%, which shows the plasticity in grain weight and grain set of wheat if sufficient assimilates are available. Additional nitrogen supply at anthesis had no significant effect on the total aboveground biomass, but increased grain yield through more allocation of dry matter to grains. Our findings suggest that for rainfed wheat with optimum N supply and supplemental irrigation, wheat growers should choose cultivars with a high grain number per ear and manage the crop to increase grain number per unit of land (sink capacity).



Author(s):  
Brijbhooshan ◽  
V. K. Singh ◽  
Shalini

A field experiment was conducted during rabi seasons of 2007-08 and 2008-09 on mollisols at G.B. Pant University of Agriculture & Technology, Pantnagar to study the performance of fieldpea (Pisum sativum L.var arvense) under different planting methods, irrigation levels and weed management practices. Results revealed that growth attributes as plant height, number of branches and dry matter accumulation per plant, number and dry weight of nodules per plant, density and dry matter of weeds/unit area, nutrient uptake and yield attributes as pods/plant, 1000-grain weight, grain yield/plant and grain yield of fieldpea were significantly higher under raised bed planting as compared to flat bed. Planting on raised bed increased grain yield of fieldpea by 17.5% over flat bed. Two irrigations applied at critical stages i.e. pre-flowering and pod formation proved promising in increasing the growth, nutrient uptake, yield attributes and grain yield of pea. One hand weeding done at 25 days after sowing (DAS) reduced the density and dry matter of weeds significantly and one hand weeding done at 25 DAS increased the values of growth attributes, number and dry weight of nodules, nutrient uptake, yield attributes and grain yield as compared to pendimethalin 1.0 kg a.i./ha applied as pre-emergence and weedy check.



2004 ◽  
Vol 44 (6) ◽  
pp. 607 ◽  
Author(s):  
R. C. Dalal ◽  
E. J. Weston ◽  
W. M. Strong ◽  
K. J. Lehane ◽  
J. E. Cooper ◽  
...  

Continuous cultivation and cereal cropping of southern Queensland soils previously supporting native vegetation have resulted in reduced soil nitrogen supply, and consequently decreased cereal grain yields and low grain protein. To enhance yields and protein concentrations of wheat, management practices involving N fertiliser application, with no-tillage and stubble retention, grain legumes, and legume leys were evaluated from 1987 to 1998 on a fertility-depleted Vertosol at Warra, southern Queensland. The objective of this study was to examine the effect of lucerne in a 2-year lucerne–wheat rotation for its nitrogen and disease-break benefits to subsequent grain yield and protein content of wheat as compared with continuous wheat cropping.Dry matter production and nitrogen yields of lucerne were closely correlated with the total rainfall for October–September as well as March–September rainfall. Each 100 mm of total rainfall resulted in 0.97 t/ha of dry matter and 26 kg/ha of nitrogen yield. For the March–September rainfall, the corresponding values were 1.26 t/ha of dry matter and 36 kg/ha of nitrogen yield. The latter values were 10% lower than those produced by annual medics during a similar period. Compared with wheat–wheat cropping, significant increases in total soil nitrogen were observed only in 1990, 1992 and 1994 but increases in soil mineralisable nitrogen were observed in most years following lucerne. Similarly, pre-plant nitrate nitrogen in the soil profile following lucerne was higher by 74 kg/ha (9–167 kg N/ha) than that of wheat–wheat without N fertiliser in all years except 1996. Consequently, higher wheat grain protein (7 out of 9 seasons) and grain yield (4 out of 9 seasons) were produced compared with continuous wheat. There was significant depression in grain yield in 2 (1993 and 1995) out of 9 seasons attributed to soil moisture depletion and/or low growing season rainfall. Consequently, the overall responses in yield were lower than those of 50 kg/ha of fertiliser nitrogen applied to wheat–wheat crops, 2-year medic–wheat or chickpea–wheat rotation, although grain protein concentrations were higher following lucerne.The incidence and severity of the soilborne disease, common root rot of wheat caused by Bipolaris sorokiniana, was generally higher in lucerne–wheat than in continuous wheat with no nitrogen fertiliser applications, since its severity was significantly correlated with plant available water at sowing. No significant incidence of crown rot or root lesion nematode was observed. Thus, productivity, which was mainly due to nitrogen accretion in this experiment, can be maintained where short duration lucerne leys are grown in rotations with wheat.



2013 ◽  
Vol 61 (2) ◽  
pp. 101-111 ◽  
Author(s):  
G. Berhanu ◽  
T. Kismányoky ◽  
K. Sárdi

Nutrient management practices that concurrently improve soil properties and yield are essential for sustaining barley production. This study was conducted to evaluate the impact of balanced nitrogen fertilizer application involving farmyard manure (FYM) and residue management. The experiment had a factorial arrangement of five levels of mineral N and two organic fertilizer sources. The five levels of N fertilizer were applied in three replicates in combination with each of the two organic sources and a control (without organic source). Average plant height (PH), grain yield (GY), and straw yield (SY) were significantly (P <0.05) influenced by the main effect of N application and organic source; however their interaction was insignificant. The highest grain yield (103%) was obtained with 120 kg N compared to the control. The grain yield increased by 23.4% and 44% with FYM and residue, respectively, against the untreated control.



2013 ◽  
Vol 46 (3) ◽  
pp. 29-38
Author(s):  
S.H. Mosavifeyzabadi ◽  
F. Vazin ◽  
M. Hassanzadehdelouei

Abstract In hot and arid regions, drought stress is considered as one of the main reasons for yield reduction. To study the effect of drought stress, nitrogen and zinc spray on the yield and yield components of corn, an experiment was carried out during the crop seasons of 2010 and 2011 on Emam Khomeyni research Farm in Mahvellat as a split factorial within randomized complete block design with three replicates. The main plots with irrigation factor and three levels were considered: full irrigation, stopping irrigation at anthesis step and stopping irrigation at the seed filling stage. Subplots were considered with and without nitrogen and zinc spray. The drought stress reduced the grain yield in anthesis stage more than other stages. Drought stress effects significantly on stem and ear diameter, ear length, chlorophyll value, leaf area index, leaf relative water content, stem, ear and leaves dry weight, number grain in ear and row, number row in ear, unfilled seed percentage and thousand grains weight. Nitrogen increased the seed yield and yield component except thousand grains weight and the number of row in ear. Using Zn, as compared with control treatment, causes the increase of grain yield, thousand grains weight and number grain in ear 16.5, 9 and 5.5%, respectively. The results obtained from the present research showed that anthesis stage was most sensitive stage to drought stress. Also nitrogen and Zn could somewhat reduce the impact drought stress on corn.



2001 ◽  
Vol 41 (8) ◽  
pp. 1167 ◽  
Author(s):  
Philip J. Newton

Use of urea fertiliser for cereal cropping in south eastern Australia has increased rapidly in recent years to arrest a general decline in grain protein and to increase yields. In conservation cropping systems, crop stubbles provide a source of carbon, which has the potential to retain a portion of the fertiliser nitrogen in the soil. The impact of fertiliser nitrogen was compared under 4 stubble management regimes for efficiency of nitrogen uptake by a wheat crop in a long-term cereal–grain legume rotation. The experiment was established on a duplex red-brown earth in 1985 to compare stubble retention (standing, shredded, incorporated) with stubble burning. In 1995, wheat following a failed lupin crop was topdressed with urea fertiliser at 50 kg nitrogen per hectare to split plots of each stubble treatment at the third-leaf stage of growth. The urea significantly increased nitrogen uptake by wheat grown on burnt stubbles and increased grain yield by 1 t/ha. Nitrogen applied to wheat grown on stubbles retained above-ground increased yield by 0.5 t/ha, whereas there was no significant yield increase from nitrogen when stubble was incorporated due to less transfer of dry matter to grain. Efficiency of urea-nitrogen uptake in grain was reduced under stubble retention. The total grain nitrogen uptake in response to stubble burning increased by 17.6 kg/ha, which was equivalent to a conversion efficiency of 35%, compared with only 26, 24 and 16% of the applied 50 kg nitrogen per hectare for stubble standing, shredding and incorporation treatments, respectively. Soil organic carbon and total nitrogen levels were 1 and 0.1%, respectively, irrespective of stubble treatment. Added urea increased microbial decomposition of cellulose in calico cloth buried beneath stubbles retained above-ground by 30%, compared with stubble incorporated or burnt treatments. These results suggest that where low levels of available nitrogen exist in cropping systems that use stubble retention, higher nitrogen inputs may be needed, due to less efficient uptake of nitrogen from urea fertiliser.



2014 ◽  
Vol 47 (1) ◽  
pp. 39-47 ◽  
Author(s):  
K. Zare ◽  
F. Vazin ◽  
M. Hassanzadehdelouei

ABSTRACT In hot and arid regions, drought stress is considered as one of the main reasons for yield reduction. To study the effect of drought stress, Iron and potassium spray on the yield and yield components of corn, an experiment was carried out during the crop seasons of 2010 and 2011 on Abosaeid research field of Mahvellat as a split factorial within randomized complete block design with three replicates. The main plots with irrigation factor and three levels were considered: irrigation per 6, 9 and 12 days. Subplots were considered with and without Iron and potassium spray. The irrigation reduced the grain yield in irrigation per 12 more than other stages. Irrigation effects significantly on chlorophyll value, leaf relative water content, stem, ear and leaves dry weight, number grain in ear and row, number row in ear, unfilled seed percentage and thousand grains weight. Iron increased the seed yield and yield component, except unfilled seed percentage and SPAD. Using K, as compared with control treatment, causes the increase of grain yield, 1000 grains weight and number grain in ear 16.5, 9 and 5.5% respectively. Potassium could somewhat reduce the impact drought stress on corn.



Sign in / Sign up

Export Citation Format

Share Document