scholarly journals Sustaining productivity of a Vertosol at Warra, Queensland, with fertilisers, no-tillage or legumes. 7. Yield, nitrogen and disease-break benefits from lucerne in a two-year lucerne - wheat rotation

2004 ◽  
Vol 44 (6) ◽  
pp. 607 ◽  
Author(s):  
R. C. Dalal ◽  
E. J. Weston ◽  
W. M. Strong ◽  
K. J. Lehane ◽  
J. E. Cooper ◽  
...  

Continuous cultivation and cereal cropping of southern Queensland soils previously supporting native vegetation have resulted in reduced soil nitrogen supply, and consequently decreased cereal grain yields and low grain protein. To enhance yields and protein concentrations of wheat, management practices involving N fertiliser application, with no-tillage and stubble retention, grain legumes, and legume leys were evaluated from 1987 to 1998 on a fertility-depleted Vertosol at Warra, southern Queensland. The objective of this study was to examine the effect of lucerne in a 2-year lucerne–wheat rotation for its nitrogen and disease-break benefits to subsequent grain yield and protein content of wheat as compared with continuous wheat cropping.Dry matter production and nitrogen yields of lucerne were closely correlated with the total rainfall for October–September as well as March–September rainfall. Each 100 mm of total rainfall resulted in 0.97 t/ha of dry matter and 26 kg/ha of nitrogen yield. For the March–September rainfall, the corresponding values were 1.26 t/ha of dry matter and 36 kg/ha of nitrogen yield. The latter values were 10% lower than those produced by annual medics during a similar period. Compared with wheat–wheat cropping, significant increases in total soil nitrogen were observed only in 1990, 1992 and 1994 but increases in soil mineralisable nitrogen were observed in most years following lucerne. Similarly, pre-plant nitrate nitrogen in the soil profile following lucerne was higher by 74 kg/ha (9–167 kg N/ha) than that of wheat–wheat without N fertiliser in all years except 1996. Consequently, higher wheat grain protein (7 out of 9 seasons) and grain yield (4 out of 9 seasons) were produced compared with continuous wheat. There was significant depression in grain yield in 2 (1993 and 1995) out of 9 seasons attributed to soil moisture depletion and/or low growing season rainfall. Consequently, the overall responses in yield were lower than those of 50 kg/ha of fertiliser nitrogen applied to wheat–wheat crops, 2-year medic–wheat or chickpea–wheat rotation, although grain protein concentrations were higher following lucerne.The incidence and severity of the soilborne disease, common root rot of wheat caused by Bipolaris sorokiniana, was generally higher in lucerne–wheat than in continuous wheat with no nitrogen fertiliser applications, since its severity was significantly correlated with plant available water at sowing. No significant incidence of crown rot or root lesion nematode was observed. Thus, productivity, which was mainly due to nitrogen accretion in this experiment, can be maintained where short duration lucerne leys are grown in rotations with wheat.


1996 ◽  
Vol 36 (4) ◽  
pp. 443 ◽  
Author(s):  
MG Mason ◽  
RW Madin

Field trials at Beverley (19911, Salmon Gums (1991; 2 sites) and Merredin (1992; 2 sites), each with 5 rates of nitrogen (N) and 3 levels of weed control, were used to investigate the effect of weeds and N on wheat grain yield and protein concentration during 1991 and 1992. Weeds in the study were grasses (G) and broadleaf (BL). Weeds reduced both vegetative dry matter yield and grain yield of wheat at all sites except for dry matter at Merredin (BL). Nitrogen fertiliser increased wheat dry matter yield at all sites. Nitrogen increased wheat grain yield at Beverley and Merredin (BL), but decreased yield at both Salmon Gums sites in 1991. Nitrogen fertiliser increased grain protein concentration at all 5 sites-at all rates for 3 sites [Salmon Gums (G) and (BL) and Merredin (G)] and at rates of 69 kg N/ha or more at the other 2 sites [Beverley and Merredin (BL)]. However, the effect of weeds on grain protein varied across sites. At Merredin (G) protein concentration was higher where there was no weed control, possibly due to competition for soil moisture by the greater weed burden. At Salmon Gums (G), grain protein concentration was greater when weeds were controlled than in the presence of weeds, probably due to competition for N between crop and weeds. In the other 3 trials, there was no effect of weeds on grain protein. The effect of weeds on grain protein appears complex and depends on competition between crop and weeds for N and for water at the end of the season, and the interaction between the two.



2014 ◽  
Vol 2 (3) ◽  
pp. 328-335
Author(s):  
Saugat Dahal ◽  
Tika Bahadur Karki ◽  
Lal Prasad Amgain ◽  
Birendra Kumar Bhattachan

With the aim of developing crop management technologies that reduce the yield gap of maize (Zea mays L.) in Nepal, a study was carried-out to determine whether the grain yield of maize could be manipulated through tillage, residue, and nutrient and weed management practices. The effect of tillage (conventional and no tillage), residue (residue retained and residue removed), fertilizer (recommended doses of fertilizer and farmers’ doses of fertilizer) and weed management practices (herbicide use and manual weeding) on phenology and grain yield of maize were investigated under maize-rice cropping system in Rampur, Nepal during 2013. The experimental results revealed that no tillage had significant effect on grain yield (6.64 Mg ha-1) and phenological parameters like days to silking, physiological maturity and seed fill duration. Similarly, residue retained treatment had significant effect on grain yield (7.02 Mg ha-1) and phenological parameters. Research dose of fertilizer had significant effect on phenological parameters and grain yield (8.42 Mg ha-1). However, weed management factor did not influence significantly on grain yield and phenological parameters. The grain yield increased in no tillage by 23.19% over conventional tillage, residue retained by 39.84% over residue removed, recommended doses of fertilizer by 132.60% over farmer dose of fertilizer. Thus, no tillage, residue retention, recommended doses of fertilizer and use of herbicide for weed management can be alternative technologies for sustainable higher grain yield. DOI: http://dx.doi.org/10.3126/ijasbt.v2i3.11001Int J Appl Sci Biotechnol, Vol. 2(3): 328-335  



2003 ◽  
Vol 140 (4) ◽  
pp. 395-407 ◽  
Author(s):  
R. E. RUSKE ◽  
M. J. GOODING ◽  
S. A. JONES

Field experiments were conducted over 3 years to assess the effect of a triazole fungicide programme, and additions of strobilurin fungicides to it, on nitrogen uptake, accumulation and partitioning in a range of winter wheat cultivars. Commensurate with delayed senescence, fungicide programmes, particularly when including strobilurins, improved grain yield through improvements in both crop biomass and harvest index, although the relationship with green area duration of the flag leaf (GFLAD) depended on year and in some cases, cultivar. In all years fungicide treatments significantly increased the amount of nitrogen in the above-ground biomass, the amount of nitrogen in the grain and the nitrogen harvest index. All these effects could be linearly related to the fungicide effect on GFLAD. These relationships occasionally interacted with cultivar but there was no evidence that fungicide mode of action affected the relationship between GFLAD and yield of nitrogen in the grain. Fungicide treatments significantly reduced the amount of soil mineral N at harvest and when severe disease had been controlled, the net remobilization of N from the vegetation to the grain after anthesis. Fungicide maintained the filling of grain with both dry matter and nitrogen. The proportionate accumulation of nitrogen in the grain was later than that of dry matter and this difference was greater when fungicide had been applied. Effects of fungicide on grain protein concentration and its relationship with GFLAD were inconsistent over year and cultivar. There were several instances where grain protein concentration was unaffected despite large (1·5 t/ha) increases in grain yield following fungicide use. Dilution of grain protein concentration following fungicide use, when it did occur, was small compared with what would be predicted by adoption of other yield increasing techniques such as the selection of high yielding cultivars (based on currently available cultivars) or by growing wheat in favourable climates.



Author(s):  
Brijbhooshan ◽  
V. K. Singh ◽  
Shalini

A field experiment was conducted during rabi seasons of 2007-08 and 2008-09 on mollisols at G.B. Pant University of Agriculture & Technology, Pantnagar to study the performance of fieldpea (Pisum sativum L.var arvense) under different planting methods, irrigation levels and weed management practices. Results revealed that growth attributes as plant height, number of branches and dry matter accumulation per plant, number and dry weight of nodules per plant, density and dry matter of weeds/unit area, nutrient uptake and yield attributes as pods/plant, 1000-grain weight, grain yield/plant and grain yield of fieldpea were significantly higher under raised bed planting as compared to flat bed. Planting on raised bed increased grain yield of fieldpea by 17.5% over flat bed. Two irrigations applied at critical stages i.e. pre-flowering and pod formation proved promising in increasing the growth, nutrient uptake, yield attributes and grain yield of pea. One hand weeding done at 25 days after sowing (DAS) reduced the density and dry matter of weeds significantly and one hand weeding done at 25 DAS increased the values of growth attributes, number and dry weight of nodules, nutrient uptake, yield attributes and grain yield as compared to pendimethalin 1.0 kg a.i./ha applied as pre-emergence and weedy check.



2021 ◽  
Vol 51 (11) ◽  
Author(s):  
Amauri Nelson Beutler ◽  
Alison Machado Fontinelli ◽  
Lucas Santos da Silva ◽  
Leandro Galon ◽  
Matheus Martins Ferreira ◽  
...  

ABSTRACT: Brazil is the largest exporter and second largest producer of soybean grains. Most of this production is from plants grown under no-tillage system (NT). This research evaluated the effect of soil compaction, and different amounts of black oat residues on the soil surface on soybean growth and grain yield in lowland under NT. The experiment was conducted in a completely randomized design with seven treatments and four replications, in the 2016/2017 and 2017/2018 crop seasons. The treatments consisted of: 1) winter fallow without soil compaction (WF); 2) winter fallow with soil compaction (WF-C); 3) black oats and complete removal of surface residues, with soil compaction (0R-C); 4) black oats and removal half of surface residues, with soil compaction (0.5R-C); 5) black oats without surface residue removal, with soil compaction (1R-C); 6) black oats without surface residue removal, plus the residues from treatment 3, with soil compaction (2R-C); 7) black oats without surface residue removal, without soil compaction (1R). When the soybean plants were at the phenological stage R2, they were evaluated nodule, root and shoot dry matter, nitrogen contents, plant height, and grain yield. The soil physical properties were evaluated in the 0.0-0.05, 0.10-0.15 and 0.20-0.25 m layers. The soybean aerial dry matter is > 38% in non-compacted soil in year with soil water excess, regardless of the amount of surface oat straw. In year with small water deficit, soil with more surface oat straw produced > 5% shoot dry matter and > 4% of soybean grain, regardless of compaction. The plant growth and grain yield soybean in lowland varied according to the water conditions, and were affected by soil compaction and amounts of black oats residues on soil surface.



2017 ◽  
Vol 7 (4) ◽  
pp. 473
Author(s):  
Diego Bortolini ◽  
Luís César Cassol ◽  
Jonatas Thiago Piva ◽  
Cristiam Bosi ◽  
Kassiano Felipe Rocha

The aim of this study was to evaluate the behavior of chemical properties and crop yields during five years after liming, in a consolidated no-tillage system area and indicate a base saturation index to serve as a criterion for recommendation. The experiment was conducted in a randomized complete block design with four repetitions, being the treatments the five lime doses (0, 2.4, 4.8, 7.2 and 9.6 Mg ha-1) applied and maintained on the soil surface. Soil chemical properties were evaluated in eight soil sampling, in the layers 0 to 0.025; 0.025 to 0.05; 0.05 to 0.10; 0.10 to 0.15; 0.15 to 0.20 and 0.20 to 0.40 m, besides crop grain yield (wheat, soybean and corn) and black oat dry matter yield, totaling five years of evaluation. The surface liming in no-tillage system increased the exchangeable magnesium and calcium contents, base saturation and soil pH and reduced the exchangeable aluminum content. The cumulative grain yield (six crops) and black oat dry matter yield (three crops) was not influenced by liming. These results suggested, from this study conditions, that the value of 50% of base saturation should be adopted as a criterion for liming for crops implanted under consolidated no-tillage systems.



Agronomy ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 155 ◽  
Author(s):  
Jinfeng Ding ◽  
Fujian Li ◽  
Tao Le ◽  
Peng Wu ◽  
Min Zhu ◽  
...  

In the rice-wheat rotation system, conventional culturing of high yield rice results in poor soil conditions and excessive residues, which negatively affect wheat growth. Tillage and nitrogen (N) use are being sought to address this problem. In order to propose a suitable tillage method and corresponding N management strategy, the influence of three tillage methods (i.e., plow tillage followed by rotary tillage (PR), rotary tillage twice (RR), and no-tillage (NT)) and nine forms of N management strategies (i.e., three total N rates × three N-splitting schemes) were investigated in a field experiment from 2016 to 2017 (2017) and 2017 to 2018 (2018), using grain yield, grain protein content (GPC), N uptake efficiency (NUpE), and net returns as evaluation indexes. Grain yield, GPC, and net returns were lower in 2017 than 2018, likely as a result of weak seedling growth caused by high soil moisture before and after seeding. In 2017, NT achieved higher grain yield, NUpE, and net returns compared to PR or RR, while grain yield and net returns were higher under tillage in 2018, especially PR. Increased total N rates (210–270 kg ha−1) promoted all evaluation indexes, but suitable timing and corresponding rates of N application are dependent on the environment. These results indicate that the combination of NT and applying N at lower rates and only a few times (i.e., 168 and 72 kg ha−1 applied at pre-sowing and when flag leaves are visible) when the soil is not suitable for tillage is the best method for cutting costs and improving benefits. Under suitable conditions for tillage, PR and intensive management strategies (i.e., 135, 27, 54, and 54 kg ha−1 applied at pre-sowing, four-leaf, jointing, and booting, respectively) could be adopted to increase overall yield, quality, and benefits.



1999 ◽  
Vol 39 (8) ◽  
pp. 957 ◽  
Author(s):  
W. K. Anderson ◽  
F. C. Hoyle

Summary. Experiments were conducted at 3 sites in Western Australia in 1993 using 33 wheat cultivars and crossbreds. Two rates of applied nitrogen fertiliser (0 and 40 kg/ha of nitrogen) were used to screen the lines for efficiency of nitrogen uptake, grain yield and grain protein production per unit of nitrogen applied, and nitrogen translocation to the grain. This information can be useful in determining nitrogen fertiliser strategies for wheat cultivars in the field. Nitrogen uptake in the plant tops was measured during the season and in the grain and straw at maturity. Grain yield, grain protein and nitrogen efficiency parameters were not markedly different between grain quality grades which are largely based on grain hardness. Yield efficient lines (high net yield increase per unit of applied nitrogen) were characterised by greater net uptake and net utilisation efficiencies but had similar yields and grain protein percentages as yield inefficient lines. Protein efficient lines (high net grain protein increase per unit of applied nitrogen) also had greater uptake efficiencies but lower utilisation efficiencies than protein inefficient lines. No lines were both yield and protein efficient suggesting that lines either use fertiliser nitrogen preferentially in yield production or in production of protein. The results indicate that in nitrogen-responsive situations it will be more profitable to use yield-efficient lines. Further investigation is needed to examine the suggestion that where soil nitrogen levels are higher (and yield responses to nitrogen are less) a greater economic return may come from using protein efficient lines. Some wheat lines had a high ability to recover fertiliser nitrogen applied to the crop. Others had a high ability to take up soil nitrogen. It is postulated that these differences may be due to differences in root systems. Some mid- and long-season lines that had high concentrations of nitrogen in the tops at anthesis metabolised that nitrogen poorly into grain yield or protein. This suggests that nitrogen efficiency may be partly related to maturity relative to length of growing season.



2002 ◽  
Vol 10 (1) ◽  
Author(s):  
D R Mpairwe ◽  
E N Sabiiti ◽  
N N Ummuna ◽  
A Tegegne ◽  
P Osuji


2012 ◽  
Vol 63 (1) ◽  
pp. 17 ◽  
Author(s):  
Penny Riffkin ◽  
Trent Potter ◽  
Gavin Kearney

Area and production of canola (Brassica napus L.) in the High Rainfall Zone (HRZ) of southern Australia has increased significantly over the past decade. Varieties available to growers have not been bred specifically for the HRZ and are generally adapted to the drier regions of the cropping belt. Field experiments were conducted at Hamilton in south-west Victoria in 2005, 2006 and 2008 to identify canola traits and management suited to the HRZ of southern Australia. Nine varieties with different reported maturities (winter and spring types) were sown at either two times of sowing and/or under different nitrogen (N) fertiliser regimes. Dates of key phenological development were recorded, dry matter was determined at bud, flowering and maturity and grain yield and yield components were determined at harvest. Plant traits and climate data were assessed in relation to grain yield. Yields of the winter types were either significantly (P < 0.05) greater or not significantly less than the spring types in all 3 years and similar to those reported under experimental conditions in Europe. This was despite the winter types flowering up to 35 days later than the spring types and spring rainfall being approximately half that of the long-term average. In general, the winter types had greater early vigour, greater dry matter production at the bud, flowering and maturity stages and were taller than the spring types. Regression analysis showed positive relationships between grain yield and pod density and plant size (dry matter and plant height). Plant size was influenced by variety, time of sowing and N fertiliser application rates. Crops in the HRZ were able to sustain more seeds per pod at larger canopy sizes and pod densities than those achieved in the northern hemisphere. Despite the number of pods per g of dry matter at flowering being nearly double that reported in the UK, there was little apparent reduction in the number of seeds per pod. It is possible that higher solar radiation and warmer minimum temperatures in the HRZ of Australia provide conditions more favourable for growth before, and during grainfill. This indicates that different dry matter production and yield component targets may be appropriate for canola in this environment especially in more typical seasons. It is likely that growers will need to sow new, later maturing varieties earlier and with higher rates of N fertiliser than is current practice in Australia. This study indicates that winter types may have the potential to provide improvements to the yield of canola in the HRZ either through the direct importation of varieties from overseas or through the identification and incorporation of desired traits into existing material. It is recommended that a wider range of germplasm be assessed over a greater geographical area to identify traits and management practices to optimise phenology and canopy structure. This information can be used to help inform breeders on crop improvement priorities as well providing tailored management practices to maximise grain yields for this environment.



Sign in / Sign up

Export Citation Format

Share Document