High Throughput Determination of BTEX by a One-Step Fluorescence Polarization Immunoassay

2005 ◽  
Vol 2 (3) ◽  
pp. 227 ◽  
Author(s):  
Sergei A. Eremin ◽  
Dietmar Knopp ◽  
Reinhard Niessner ◽  
Ji Youn Hong ◽  
Song-Ja Park ◽  
...  

Environmental Context.Benzene, toluene, ethylbenzene, and xylenes (BTEX) are used as solvents in paints and coatings and are constituents of petroleum products. BTEX can contaminate air, water or soil and is toxic; benzene, in particular, is a recognized human carcinogen. Most existing methods for detecting BTEX are time-consuming, complicated and very expensive for routine screening. A rapid immunoassay of BTEX is presented that greatly simplifies environmental monitoring of water contamination. Abstract.For the rapid screening of BTEX (benzene, toluene, ethylbenzene, xylenes), a fluorescence polarization immunoassay (FPIA) was developed using the fluorescence polarization analyzer Abbott TDx. Several fluorescence-labelled tracers were synthesized by binding ethylenediamine fluorescein thiocarbamyl (EDF) to various substituted phenylcarboxylic acids. The binding of 27 tracers with two antisera that can be considered as class-specific for BTEX was investigated to select optimal tracer–antibody pairs. Significant differences were found in binding, titer, sensitivity, and assay kinetics. A best pair of anti-BTEX antiserum and EDF-labelled p-tolylacetic acid tracer was selected for FPIA. To simplify the method, an immunocomplex single reagent was prepared to detect BTEX by a one-step FPIA. One-step FPIA is a rapid homogeneous type of immunoassay that has only one pipetting step, does not need separation of free and bound analyte and can be performed at room temperature. The within-run coefficient of variation was ranged between 3.4% and 5.7%. Furthermore, if the measurement can be done at constant temperature, standards for every assay run are unnecessary. Cross-reactivity studies of petroleum compounds and a BTEX mixture indicated that p-xylene was most reactive with a limit of detection (LOD) of 0.22 µg mL−1 in 50 µL of sample. The LOD for toluene and benzene was 2.1 and 11 µg mL−1 respectively. The immunocomplex single reagent has proven to be significantly more stable than the corresponding solutions of antibody and tracer.

Foods ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1822
Author(s):  
Qidi Zhang ◽  
Ming Zou ◽  
Wanyu Wang ◽  
Jinyan Li ◽  
Xiao Liang

The compound, 4,4′-dinitrocarbanilide (DNC), is the marker residue of concern in edible tissues of broilers fed with diets containing anticoccidial nicarbazin (NIC). In this study, 25 fluorescein-labeled DNC derivatives (tracers) are synthesized and characterized to develop a rapid fluorescence polarization immunoassay (FPIA) for the detection of DNC in chickens using DNC monoclonal antibodies (mAbs). The effect of the tracer structure on the sensitivity of the FPIA is investigated. Our results show that after optimization, the half maximal inhibitory concentrations (IC50) and limit of detection (LOD) of the FPIA in the buffer are 28.3 and 5.7 ng mL−1, respectively. No significant cross-reactivity (CR < 0.89%) with 15 DNC analogues is observed. The developed FPIA is validated for DNC detection in spiked chicken homogenates, and recoveries ranged from 74.2 to 85.8%, with coefficients of variation <8.6%. Moreover, the total time needed for the detection procedure of the FPIA, including sample pretreatment, is <40 min, which has not been achieved in any other immunoassays for DNC from literature. Our results demonstrate that the FPIA developed here is a simple, sensitive, specific, and reproducible screening method for DNC residues in chickens.


1992 ◽  
Vol 38 (11) ◽  
pp. 2228-2232 ◽  
Author(s):  
R Stenzel ◽  
B Reckmann

Abstract The most common methods for measuring digoxin concentrations in serum are immunoassays. The prerequisite for exact determination of the digoxin value is an antibody that specifically binds digoxin. Because digitoxin differs from digoxin only in the C-12 hydroxy group, it is difficult to obtain anti-digoxin antibodies that do not cross-react with this compound. During the development of a fluorescence polarization immunoassay (FPIA) for digoxin, we investigated digoxin tracers with different structures. We found that in FPIA the digitoxin cross-reactivity of an antibody could be reduced by varying the structure of the tracer molecule.


Molecules ◽  
2019 ◽  
Vol 24 (24) ◽  
pp. 4462
Author(s):  
Xing Shen ◽  
Jiahong Chen ◽  
Shuwei Lv ◽  
Xiulan Sun ◽  
Boris B. Dzantiev ◽  
...  

Enrofloxacin (ENR) is a widely used fluoroquinolone (FQ) antibiotic for antibacterial treatment of edible animal. In this study, a rapid and highly specific fluorescence polarization immunoassay (FPIA) was developed for monitoring ENR residues in animal foods. First, ENR was covalently coupled to bovine serum albumin (BSA) to produce specific polyclonal antibodies (pAbs). Three fluorescein-labeled ENR tracers (A, B, and C) with different spacers were synthesized and compared to obtain higher sensitivity. Tracer C with the longest arm showed the best sensitivity among the three tracers. The developed FPIA method showed an IC50 (50% inhibitory concentration) of 21.49 ng·mL−1 with a dynamic working range (IC20–IC80) of 4.30–107.46 ng·mL−1 and a limit of detection (LOD, IC10) of 1.68 ng·mL−1. The cross-reactivity (CR) of several structurally related compounds was less than 2%. The recoveries of spiked pork liver and chicken samples varied from 91.3% to 112.9%, and the average coefficients of variation were less than 3.83% and 5.13%, respectively. The immunoassay took only 8 min excluding sample pretreatment. This indicated that the established method had high sensitivity, specificity, and the advantages of simplicity. Therefore, the proposed FPIA provided a useful screening method for the rapid detection of ENR residues in pork liver and chicken.


Foods ◽  
2020 ◽  
Vol 9 (3) ◽  
pp. 281 ◽  
Author(s):  
Mingfei Pan ◽  
Tianyu Ma ◽  
Jingying Yang ◽  
Shijie Li ◽  
Shengmiao Liu ◽  
...  

This paper describes the development of lateral flow immunochromatographic assays (ICAs) using colloidal Au sphere (SP) and nanorods (NRs) as signal markers for the determination of zearalenone (ZEN) in cereals. The developed ICAs can detect the analyte ZEN within a short time (10 min), and achieve lower limit of detection (LOD). This is the first time that the AuNRs are used as signal probe in immune test strip for ZEN detection. For colloidal AuSP immunochromatographic analysis (AuSP-ICA), the LODs in solution and spiked cereal sample were 5.0 μg L−1 and 60 μg kg−1, and for AuNRs immunochromatographic analysis (AuNRs-ICA) the two LODs achieved 3.0 μg L−1 and 40 μg kg−1, respectively. These two proposed ICAs have minor cross-reaction to the structural analogs of ZEN, and no cross-reactivity with aflatoxin B1, T-2 toxin, ochratoxin A, deoxynivalenol, fumonisin B1. Both of the developed ICAs can specifically and sensitively detect ZEN in cereals, providing an effective strategy for rapid screening and detection of ZEN in a large number of food samples.


Toxins ◽  
2019 ◽  
Vol 11 (7) ◽  
pp. 380 ◽  
Author(s):  
Vincenzo Lippolis ◽  
Anna C. R. Porricelli ◽  
Erminia Mancini ◽  
Biancamaria Ciasca ◽  
Veronica M. T. Lattanzio ◽  
...  

T-2 and HT-2 toxins and their main modified forms (T-2 glucoside and HT-2 glucoside) may co-occur in cereals and cereal-based products. A fluorescence polarization immunoassay (FPIA) was developed for the simultaneous determination of T-2 toxin, HT-2 toxin and relevant glucosides, expressed as sum. The developed FPIA, using a HT-2-specific antibody, showed high sensitivity (IC50 = 2.0 ng/mL) and high cross-reactivity (100% for T-2 toxin and 80% for T-2 and HT-2 glucosides). The FPIA has been used to develop two rapid and easy-to-use methods using two different extraction protocols, based on the use of organic (methanol/water, 90:10, v/v) and non-organic (water) solvents, for the determination of these toxins in wheat. The two proposed methods showed analytical performances in terms of sensitivity (LOD 10 µg/kg) recovery (92–97%) and precision (relative standard deviations ≤13%), fulfilling the criteria for acceptability of an analytical method for the quantitative determination of T-2 and HT-2 toxins established by the European Union. Furthermore, the methods were then validated in accordance with the harmonized guidelines for the validation of screening methods included in the Regulation (EU) No. 519/2014. The satisfactory analytical performances, in terms of intermediate precision (≤25%), cut-off level (80 and 96 µg/kg for the two methods) and rate of false positives (<0.1%) confirmed the applicability of the proposed methods as screening method for assessing the content of these toxins in wheat at the EU indicative levels reported for T-2 and HT-2 toxins.


Author(s):  
Anna Raysyan ◽  
Robin Moerer ◽  
Bianca Coesfeld ◽  
Sergei A. Eremin ◽  
Rudolf J. Schneider

AbstractPharmacologically active compounds are often detected in wastewater and surface waters. The nonsteroidal anti-inflammatory drug diclofenac (DCF) was included in the European watch list of substances that requires its environmental monitoring in the member states. DCF may harmfully influence the ecosystem already at concentrations ≤ 1 μg L−1. The fast and easy quantification of DCF is becoming a subject of global importance. Fluorescence polarization immunoassay (FPIA) is a homogeneous mix-and-read method which does not require the immobilization of reagents. FPIA can be performed in one phase within 20–30 min, making it possible to analyse wastewater without any complicated pre-treatment. In this study, new tracer molecules with different structures, linking fluorophores to derivatives of the analyte, were synthesized, three homologous tracers based on DCF, two including a C6 spacer, and one heterologous tracer derived from 5-hydroxy-DCF. The tracer molecules were thoroughly assessed for performance. Regarding sensitivity of the FPIA, the lowest limit of detection reached was 2.0 μg L−1 with a working range up to 870 μg L−1. The method was validated for real wastewater samples against LC-MS/MS as reference method with good agreement of both methods.


2020 ◽  
Vol 8 ◽  
Author(s):  
Liangliang Zhou ◽  
Jiachuan Yang ◽  
Zhexuan Tao ◽  
Sergei A. Eremin ◽  
Xiude Hua ◽  
...  

A fluorescence polarization immunoassay (FPIA) for the determination of imidacloprid (IMI) was developed with advantages of simple operation and short assay time. The haptens of IMI, acetamiprid (ACE), and thiamethoxam (THI) were conjugated with fluorescein isothiocyanate ethylenediamine (EDF) and 4′-Aminomethyl fluorescein (AMF), respectively, to prepare six fluorescence tracers. The conjugation of IMI hapten and EDF (IMI-EDF) was selected to develop the FPIA due to the largest fluorescent polarization value increase in the presence of anti-IMI monoclonal antibody. Under the optimum condition, the limit of detection, 50% inhibition concentration and detection range of the FPIA were 1.7, 4.8, and 1.7–16.3 μg/L, respectively. The cross-reactivities (CRs) with the analogs of IMI were negligible except for imidaclothiz with CR of 79.13%. The average recovery of spiked paddy water, corn and cucumber samples were 82.4–118.5% with the RSDs of 7.0–15.9%, which indicated the FPIA had good accuracy. Thus, the developed FPIA was a potential tool for the rapid and accurate determination of IMI in agricultural and environmental samples.


1988 ◽  
Vol 34 (7) ◽  
pp. 1459-1461 ◽  
Author(s):  
W Vogt ◽  
I Welsch

Abstract A recently introduced fluorescence polarization immunoassay (FPIA) for determination of cyclosporine A in serum and plasma is discussed with regard to its use for whole-blood samples, with and without hemolysis before the assay. The performance characteristics of the modified method are highly satisfactory (within-run CVs 2.06 to 5.50% and 1.99 to 3.39%, respectively; long-term between-run CVs under routine conditions 5.73 to 8.95%). The limit of detection is 30 micrograms/L. Results agree well with those obtained with the RIAs compared, but the modified FPIA is more convenient and faster.


Sign in / Sign up

Export Citation Format

Share Document