Fitzroy River Basin, Queensland, Australia. III. Identification of sediment sources in the coastal zone

2008 ◽  
Vol 5 (3) ◽  
pp. 231 ◽  
Author(s):  
J. Smith ◽  
G. B. Douglas ◽  
L. C. Radke ◽  
M. Palmer ◽  
B. P. Brooke

Environmental context. The Fitzroy River Basin is a major source of suspended sediment and nutrients to the southern Great Barrier Reef lagoon. A reduction in sediment and nutrient loads is necessary to protect coastal reefs and this requires an understanding of the sediment sources. The present geochemical and modelling study provides a quantitative estimate of the spatial and temporal variations in the sources of sediment deposited in the Fitzroy River coastal zone. Abstract. Sediment sources to the Fitzroy River coastal zone have been identified and quantified using an integrated geochemical and modelling approach. The coastal sediments display little geochemical variation as a result of substantial homogenisation during hydrodynamic processes and indicate a sediment composition consistent with derivation from mixed catchment sources. A lack of substantial temporal geochemical variation in the sediment records indicates weathering regimes and hydrodynamic transport have been relatively consistent throughout the Holocene. Despite this apparent geochemical homogeneity, a modelling approach using a Bayesian statistical model revealed changes in catchment sediment sources over time. Variations in the occurrence and intensity of rainfall events in different parts of the catchment as well as land-use changes following European settlement are likely to have had a substantial effect on the relative contributions of the catchment sources delivered to and deposited in the coastal zone. Additionally, large variations in flow events and variable estuary hydrodynamics result in different catchment soil types being delivered and deposited under different conditions. The present study found that basaltic material is the dominant catchment source in the coastal surface sediments with an estimated enrichment of ~3 relative to catchment and estuary abundances. Basaltic soils present as a more recent and extensive, weathered surficial cover are more readily mobilised than other catchment soils and will be transported further within freshwater flood plumes. It is likely that in large flood events, this basaltic material may reach the coral-dominated outer shelf. Improved land management practices to reduce sediment loads can be targeted to the areas supplying the majority of sediment to the coastal zone.

2006 ◽  
Vol 3 (5) ◽  
pp. 377 ◽  
Author(s):  
G. B. Douglas ◽  
P. W. Ford ◽  
M. Palmer ◽  
R. M. Noble ◽  
R. Packett

Environmental Context. The Fitzroy River Basin constitutes a major source of suspended sediment and nutrient fluxes to the southern Great Barrier Reef. Improved land management practices to ameliorate these catchment loads require an understanding of the sediment sources and dynamics. This multidisciplinary geochemical and modelling study provides for the first time a quantitative estimate of sediment sources delivered to, and their degree of retention in, the Fitzroy River Estuary. Abstract. Sources of sediment deposited in the Fitzroy River Estuary (FRE) have been identified and quantified using an integrated geochemical, modelling and reconnaissance soil sampling approach. A companion paper (this volume) identifies the major sources of sediments in impoundments on the major river systems and sediment sampled from flood events in the Fitzroy River Basin (FRB). Sediment within the FRE may display distinct longitudinal variation with little basaltic material retained. Sediments derived from the Bowen Basin, which occupies the greatest portion of the FRB, and from the Surat Basin display the greatest longitudinal variation. All FRB soils have a similar total phosphorus (P) concentration. Thus, in considering P export from the catchment it is the total sediment flux which is of major importance, rather than the relative proportions of individual catchment soils. This research provides crucial new regional scale information on the sediment sources deposited within the FRE.


2022 ◽  
Vol 259 ◽  
pp. 107241
Author(s):  
Giovanni Francesco Ricci ◽  
Ersilia D’Ambrosio ◽  
Anna Maria De Girolamo ◽  
Francesco Gentile

2006 ◽  
Vol 3 (5) ◽  
pp. 364 ◽  
Author(s):  
G. B. Douglas ◽  
P. W. Ford ◽  
M. Palmer ◽  
R. M. Noble ◽  
R. Packett

Environmental Context. The Fitzroy River Basin is a major contributor to the loads of suspended sediment and nutrients reaching coastal areas in the southern Great Barrier Reef. Cost-effective investment in improved land, vegetation, and water management to lower these loads requires an understanding of the sources and movement of sediments within the basin. This multidisciplinary geochemical and modelling study provides for the first time a quantitative estimate of sediment sources and spatial and hydrology-related variation within the Fitzroy River Basin. Abstract. An integrated geochemical, modelling, and reconnaissance soil sampling approach has been used to identify the sources of sediment in the Fitzroy River Basin (FRB). The composition of sediment in weirs and dams within the FRB indicate that in the southern and central FRB the Dawson River contributes only a small basaltic component and the inputs are dominated by soils from the Surat and Bowen Basins. Rivers from the central FRB carry variable amounts of basaltic soils. In contrast, basaltic soils constitute the majority of sediment transported during flood events. Surat Basin soils form a minor component of flood events with little contribution from soils of the Bowen Basin despite it constituting the majority of the area of the central FRB. Soils from the Thomson Fold Belt constitute a substantial proportion of the sediment transported by, and retained in, impoundments in the central FRB and also dominate sediment delivered from the western FRB. This study will inform cost-effective investment by government to target remedial actions to reduce sediment and nutrient loads within the FRB that may be ultimately transported via the Fitzroy River Estuary to the southern Great Barrier Reef.


2012 ◽  
Vol 9 (1) ◽  
pp. 57-70 ◽  
Author(s):  
L. Lassaletta ◽  
E. Romero ◽  
G. Billen ◽  
J. Garnier ◽  
H. García-Gómez ◽  
...  

Abstract. Despite the particular management practices and climate characteristics of the Mediterranean regions, the literature dealing with N budgets in large catchments subjected to Mediterranean conditions is scarce. The present study aims to deepen our knowledge on the N cycle within the Ebro River Basin (NE Spain) by means of two different approaches: (1) calculating a global N budget in the Ebro River Basin and (2) calculating a series of detailed regional budgets at higher geographical resolution. N inputs and outputs were spatialized by creating a map based on the most detailed information available. Fluvial and atmospheric N export was estimated together with N retention. The Ebro River Basin annually receives a relatively high amount of new N (5118 kg N km−2 yr−1), mostly in the form of synthetic fertilizers (50%). Although it is a highly productive catchment, the net N input as food and feed import is also high (33%). Only 8% of this N is finally exported to the delta zone. Several territorial units characterized by different predominant uses (rainfed agriculture, irrigated agriculture and pastures) have differentiated N dynamics. However, due to the high density of irrigation channels and reservoirs that characterize Mediterranean catchments, N retention is very high in all of them (median value, 91%). These results indicate that problems of eutrophication due to N delivery in the coastal area may not be too severe but that high N retention values may instead lead to problems within the catchment, such as pollution of aquifers and rivers, as well as high atmospheric emissions. The most promising management measures are those devoted to reducing agricultural surpluses through a better balanced N fertilization.


1996 ◽  
Vol 33 (4-5) ◽  
pp. 109-115 ◽  
Author(s):  
Hans B. Wittgren ◽  
Berit Arheimer

Source apportionment of river substance transport, i.e. estimation of how much each source in each subbasin contributes to the river-mouth transport, is a vital step in achieving the most efficient management practices to reduce pollutant loads to the sea. In this study, the spatially lumped (at sub-catchment level), semi-empirical PULSE hydrological model, with a nitrogen routine coupled to it, was used to perform source apportionment of nitrogen transport in the Söderköpingsån river basin (882 km2) in south-eastern Sweden, for the period 1991–93. The river basin was divided into 28 subbasins and the following sources were considered: land leakage from the categories forest, arable and ley/pasture; point sources, and; atmospheric deposition on lake surfaces. The calibrated model yielded an explained variance of 60%, based on comparison of measured and modelled river nitrogen (Total N) concentrations. Eight subbasins, with net contributions to the river-mouth transport exceeding 3 kg ha−1 yr−1, were identified as the most promising candidates for cost efficient nitrogen management. The other 20 subbasins all had net contributions below 3 kg ha−1 yr−1. Arable land contributed 63% of the nitrogen transport at the river mouth and would thus be in focus for management measures. However, point sources (18% contribution to net transport) should also be considered due to their relatively high accessibility for removal measures (high concentrations). E.g., the most downstream subbasin, with the largest wastewater treatment plant in the whole river basin, had a net contribution of 16 kg ha−1 yr−1. This method for source apportionment may provide authorities with quantitative information about where in a river basin, and at which sources, they should focus their attention. However, once this is done, an analysis with higher resolution has to be performed in each of the interesting subbasins, before decisions on actual management measures can be taken.


2005 ◽  
Vol 117 (3) ◽  
pp. 515 ◽  
Author(s):  
Peter J. Whiting ◽  
Gerald Matisoff ◽  
William Fornes ◽  
Frederick M. Soster

2021 ◽  
Author(s):  
Gabriela Adina Morosanu ◽  
Marta Cristina Jurchescu

<p>The key to an efficient basin management, taking into account both the liquid (river water runoff and its quality) and the solid (sediment sources and delivery) components lies in the way we approach the complex problem of sediment-generating areas in a river basin. This complexity is manifested both through the primary geomorphological processes that contribute to the mobilization of significant amounts of alluvia from the slopes and along the river valleys, and the various environmental and anthropogenic factors that act as restrictors or catalysts of sediment transfer.</p><p>In the present study, we aim to analyze the various categories of anthropogenic factors, operating at different spatial scales (local or at subcatchment/river sector level), which contribute, together with the intrinsic geomorphological potential, to the sediment supply or, conversely, to the inhibition of erosion, transport and accumulation processes.</p><p>Tracking sediment mobilization, transfer, intermediate storage and final delivery in a lithologically and geomorphologically complex environment, such as the Jiu River Basin (10,070 km<sup>2</sup>), located in SW Romania, is a difficult task which can become even more challenging when we factor in the contribution of some additional elements of an anthropic nature. In our study area, represented by a Carpathian and Danubian river basin, some of the most significant issues impacting the research include, on the one hand, the existence of reservoirs and dams, the strengthening of anti-flood embankments or the presence of water diversions, to cite only hydrotechnical interventions, or the impact of coal mining on landforms, slope processes and sediment sources, on the other hand.  All these factors can act locally or regionally and they can surpass the influence exerted by the natural factors, thus being responsible for the reduction, storage, or, on the contrary, for the acceleration of specific hydro-sedimentary fluxes on certain paths.</p><p>In order to connect these two categories of potential factors regulating sediment generation and transfer, the methodological approach consists in evaluating the internal – geomorphic upstream-downstream connectivity in relation/contrast with the disruptive anthropogenic factors. The proposed workflow can be divided in two steps: 1) the identification of the upstream sediment generating areas which are most connected to the downstream delivery/ storage/ accumulation areas (river network and river mouth) by applying the connectivity index (IC) proposed by Cavalli et al. (2013); and 2) the evaluation of potential hotspot areas exhibiting the highest degree of connectivity, as seen through the lens of the additional coupling or decoupling effects induced by the anthropic activities specific to the Jiu river basin: hydraulic structures and coal mining.</p><p>Outcome discussions will focus on mapping problematic sediment production, storage and transfer sectors, as evidenced by the impact of hydrotechnical works and artificial landforms from coal mining on the connectivity potential of the Jiu river basin.</p>


2020 ◽  
Vol 34 (13) ◽  
pp. 3967-3984
Author(s):  
Runjie Li ◽  
Jinkang Du ◽  
Guodong Bian ◽  
Yuefeng Wang ◽  
Changchun Chen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document