Plant growth-promoting bacteria as a tool to improve salinity tolerance in sweet pepper

2012 ◽  
Vol 39 (1) ◽  
pp. 82 ◽  
Author(s):  
Francisco M. del Amor ◽  
Paula Cuadra-Crespo

To characterise the effect of bacterial inoculants (Azospirillum brasilense and Pantoea dispersa) on the response of sweet pepper (Capsicum annuum L.) to saline stress, plants were exposed to 0, 40, 80 and 120 mM NaCl in solution. The effect on plant growth; leaf gas exchange; NO3–, Cl–, K+ and Na+ accumulation; and chlorophyll fluorescence and content were investigated. Total plant DW was reduced significantly by salinity but when inoculants were applied, DW was increased. Inoculated plants showed higher DW accumulation in the roots. Salinity levels up to 80 mM NaCl did not affect the net assimilation rate in inoculated plants but 40 mM NaCl was enough to reduce this parameter in non-inoculated plants. The leaf area ratio was not modified substantially by inoculation. The leaf Cl– concentration of inoculated plants was reduced at the highest salinity, compared with control plants, and NO3– concentration increased markedly. A higher K+ : Na+ ratio was found in inoculated plants. Leaf photosynthesis and stomatal conductance were impaired significantly at moderate, but not low, salinity, the effect of inoculation being enough to maintain higher stomatal conductance under higher stress. The photochemical efficiency of PSII and the relative chlorophyll content were not affected by the inoculants. Thus, the effects of the inoculants on the response to salinity were due mainly to stomatal regulation of photosynthesis rather than effects on biochemical limitations on photosynthesis. These results indicate the benefits of these bacterial inoculants in ameliorating the deleterious effect of NaCl in a salt-sensitive crop like sweet pepper.

2018 ◽  
Vol 64 (12) ◽  
pp. 968-978 ◽  
Author(s):  
Shiying Zhang ◽  
Cong Fan ◽  
Yongxia Wang ◽  
Yunsheng Xia ◽  
Wei Xiao ◽  
...  

Growth and productivity of rice is negatively affected by soil salinity. However, some salt-tolerant bacteria improve the health of plants under saline stress. In this study, 305 bacteria were isolated from paddy soil in Taoyuan, China. Among these, 162 strains were tested for salt-tolerance; 67.3%, 28.4%, and 9.3% of the strains could grow in media with NaCl concentrations of 50, 100, and 150 g/L, respectively. The phylogenic analysis of 74 of these 162 strains indicates that these bacteria belong to Bacillales (72%), Actinomycetales (22%), Rhizobiales (1%), and Oceanospirillales (4%). Among 162 strains, 30 salt-tolerant strains were screened for their plant-growth-promoting activities under axenic conditions at 3, 6, 9, and 12 g/L NaCl; 43%–97% of the strains could improve rice germination energy or germination capacity, while 63%–87% of the strains could increase shoot and root lengths. Among various plant-growth-promoting bacteria, TY0307 was the most effective strain for promoting the growth of rice, even at high salt stress. Its promotor effects were associated with its production of 1-aminocyclopropane-1-carboxycarboxylate deaminase, indole acetic acid, and siderophores; induction of proline accumulation; and reduction of the salt-induced malondialdehyde content. These results suggest that several strains isolated from paddy soil could improve rice salt tolerance and may be used in the development of biofertilizer.


2021 ◽  
Vol 3 ◽  
Author(s):  
María Florencia Yañez-Yazlle ◽  
Neli Romano-Armada ◽  
Verónica Beatriz Rajal ◽  
Verónica Patricia Irazusta

The rhizosphere and microbiome of halotolerant plants could be crucial for alleviating salinity stress during plant growth. The aims of this work were (1) to isolate bacteria from rhizosphere and bulk soil samples from the Salar del Hombre Muerto (Catamarca, Argentina), (2) to characterize different plant growth-promoting (PGP) activities produced by these bacterial isolates, and (3) to evaluate their effect on the initial growth of chia (Salvia hispanica L.) under saline stress. A total of 667 microorganisms were isolated, using different culture media with NaCl, and their abilities for nitrogen fixation, phosphate solubilization, siderophores production, and indole-3-acetic acid production were evaluated. Thirteen strains were selected for showing all the tested PGP activities; they belonged to the genera Kushneria, Halomonass, Pseudomonas, Planomicrobium, and Pseudarthrobacter. The strains Kushneria sp. and Halomonas sp. showed the highest salinity tolerance (from 50 to 2,000 mM NaCl) and biomass and biofilm production. Chia seeds were treated with six of the first 13 selected strains to evaluate their plant growth-promoting effect under saline stress (without and with 50 and 100 mM NaCl). Halomonas sp. 3R.12 and Kushneria sp. T3.7 produced heavier seedlings with a balanced shoot/root length ratio, while Pseudomonas sp. AN23 showed the best effect upon chia seedlings, with a morphological response similar to non-stressed seedlings. On the other hand, seedlings displayed no responses when inoculated with Planomicrobium sp. 3S.31 and Pseudarthrobacter sp. ER25. This study contributes to the knowledge on microorganisms from hypersaline environments as plant growth promoters for their use in the production of salt-sensitive crops, among other potential uses.


2012 ◽  
Vol 61 ◽  
pp. 264-272 ◽  
Author(s):  
Daniel Rojas-Tapias ◽  
Andrés Moreno-Galván ◽  
Sergio Pardo-Díaz ◽  
Melissa Obando ◽  
Diego Rivera ◽  
...  

2020 ◽  
Vol 10 (20) ◽  
pp. 7025
Author(s):  
Slimane Mokrani ◽  
El-hafid Nabti ◽  
Cristina Cruz

Humanity in the modern world is confronted with diverse problems at several levels. The environmental concern is probably the most important as it threatens different ecosystems, food, and farming as well as humans, animals, and plants. More specifically, salinization of agricultural soils is a global concern because of on one side, the permanent increase of the areas affected, and on the other side, the disastrous damage caused to various plants affecting hugely crop productivity and yields. Currently, great attention is directed towards the use of Plant Growth Promoting Bacteria (PGPB). This alternative method, which is healthy, safe, and ecological, seems to be very promising in terms of simultaneous salinity alleviation and improving crop productivity. This review attempts to deal with different aspects of the current advances concerning the use of PGPBs for saline stress alleviation. The objective is to explain, discuss, and present the current progress in this area of research. We firstly discuss the implication of PGPB on soil desalinization. We present the impacts of salinity on crops. We look for the different salinity origin and its impacts on plants. We discuss the impacts of salinity on soil. Then, we review various recent progress of hemophilic PGPB for sustainable agriculture. We categorize the mechanisms of PGPB toward salinity tolerance. We discuss the use of PGPB inoculants under salinity that can reduce chemical fertilization. Finally, we present some possible directions for future investigation. It seems that PGPBs use for saline stress alleviation gain more importance, investigations, and applications. Regarding the complexity of the mechanisms implicated in this domain, various aspects remain to be elucidated.


2012 ◽  
Vol 2 (2) ◽  
pp. 24 ◽  
Author(s):  
Jie Zhou ◽  
Lei Fang ◽  
Xiao Wang ◽  
Lanping Guo ◽  
Luqi Huang

<p>Smoke-water (SW) had been reported to improve the growth of <em>Isatis indigotica</em>, a Chinese medicinal plant. However, there were very few reports on the mechanism of smoke-water improving plant growth. In this study the effects of smoke-water on the photosynthetic characteristics of <em>I.</em><em> indigotica</em> seedlings were investigated for the purpose of understanding the mechanism behind this improved plant growth. The results showed that net photosynthetic rate (<em>P<sub>n</sub></em>) was increased by smoke-water, reaching a maximum on 15, 5 and 15 d after treatment with smoke-water at dilutions of 1:500, 1:1000 and 1:2000 respectively. Transpiration rate (<em>T<sub>r</sub></em>) and stomatal conductance (<em>G<sub>s</sub></em>) both showed similar trends to<sub> </sub><em>P<sub>n</sub></em>, however, intercellular CO<sub>2</sub> concentration<em> </em>(<em>C<sub>i</sub></em>) was decreased with smoke-water treatment. The F<sub>v</sub>/F<sub>m</sub> was not significantly influenced by smoke-water treatment. The ?PSII was markedly promoted with the application of smoke-water (1:1000) compared with the control and the coefficient of photochemical quenching (qP) showed a similar trend to ?PSII. However the coefficient of non-photochemical quenching of chlorophyll (NPQ) was decreased with treatment of smoke-water. These findings indicate that smoke-water treatment induce an increase in photosynthesis and suggest the main factors leading to this might be the improved stomatal conductance and the enhanced level of the photochemical efficiency of PSII in leaves.</p>


Author(s):  
J. Monk ◽  
E. Gerard ◽  
S. Young ◽  
K. Widdup ◽  
M. O'Callaghan

Tall fescue (Festuca arundinacea) is a useful alternative to ryegrass in New Zealand pasture but it is slow to establish. Naturally occurring beneficial bacteria in the rhizosphere can improve plant growth and health through a variety of direct and indirect mechanisms. Keywords: rhizosphere, endorhiza, auxin, siderophore, P-solubilisation


2020 ◽  
Vol 53 (2) ◽  
Author(s):  
Muhammad Mubeen ◽  
Asghari Bano ◽  
Barkat Ali ◽  
Zia Ul Islam ◽  
Ashfaq Ahmad ◽  
...  

2019 ◽  
Vol 1 (1) ◽  
pp. 1
Author(s):  
Salah Eddin Khabbaz ◽  
D. Ladhalakshmi ◽  
Merin Babu ◽  
A. Kandan ◽  
V. Ramamoorthy ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document