Comparative transcriptional profiling of two rice genotypes carrying SUB1A-1 but exhibiting differential tolerance to submergence
Submergence tolerance in rainfed lowland rice (Oryza sativa L.) is determined mainly by SUB1A-1, which confers the tolerance by regulating the ethylene- and gibberellin-mediated gene expression responsible for carbohydrate consumption, cell elongation and ethanolic fermentation. However, two indica rice genotypes, FR13A and Goda Heenati, both carrying this gene, exhibited differential tolerance to submergence. Comparative analysis of transcriptional profiling of the two genotypes revealed that many of antioxidant genes were more highly expressed in FR13A than in Goda Heenati under both submergence and control conditions, or only under submergence, whereas most of genes involved in biosynthesis and signalling of ethylene and GA and in anaerobic carbohydrate metabolism had comparable levels of expression between genotypes under the same conditions. H2O2 and malondialdehyde (MDA) assays demonstrated that Goda Heenati accumulated more H2O2 and had more MDA, a product of lipid peroxidation, than FR13A under submergence. These findings suggest that apart from SUB1A-mediated ‘quiescence strategy’, the detoxification of reactive oxygen species (ROS) is another important trait associated with submergence tolerance. The information obtained from this study helps in further understanding of the mechanism underlying submergence tolerance.