scholarly journals Effect of high temperature on the reproductive development of chickpea genotypes under controlled environments

2012 ◽  
Vol 39 (12) ◽  
pp. 1009 ◽  
Author(s):  
Viola Devasirvatham ◽  
Pooran M. Gaur ◽  
Nalini Mallikarjuna ◽  
Raju N. Tokachichu ◽  
Richard M. Trethowan ◽  
...  

High temperature during the reproductive stage in chickpea (Cicer arietinum L.) is a major cause of yield loss. The objective of this research was to determine whether that variation can be explained by differences in anther and pollen development under heat stress: the effect of high temperature during the pre- and post-anthesis periods on pollen viability, pollen germination in a medium, pollen germination on the stigma, pollen tube growth and pod set in a heat-tolerant (ICCV 92944) and a heat-sensitive (ICC 5912) genotype was studied. The plants were evaluated under heat stress and non-heat stress conditions in controlled environments. High temperature stress (29/16°C to 40/25°C) was gradually applied at flowering to study pollen viability and stigma receptivity including flower production, pod set and seed number. This was compared with a non-stress treatment (27/16°C). The high temperatures reduced pod set by reducing pollen viability and pollen production per flower. The ICCV 92944 pollen was viable at 35/20°C (41% fertile) and at 40/25°C (13% fertile), whereas ICC 5912 pollen was completely sterile at 35/20°C with no in vitro germination and no germination on the stigma. However, the stigma of ICC 5912 remained receptive at 35/20°C and non-stressed pollen (27/16°C) germinated on it during reciprocal crossing. These data indicate that pollen grains were more sensitive to high temperature than the stigma in chickpea. High temperature also reduced pollen production per flower, % pollen germination, pod set and seed number.

Silva Fennica ◽  
2019 ◽  
Vol 53 (2) ◽  
Author(s):  
Yan Liu ◽  
Yuan Zhang ◽  
Qing Zhou ◽  
Jian Wu ◽  
Pingdong Zhang

Colchicine is widely used as a mutagen to induce production of diploid gametes in plants. However, whether colchicine affects induced pollen viability remains unclear. To clarify whether colchicine affected the viability of induced pollen, we induced production of diploid pollen by colchicine, followed by pollen germination and crossing induced pollen with normal gametes to produce triploid in Carrière. The results showed that the predominant meiotic stages and the number of colchicine injections had significant effects on the occurrence rates of induced 2n pollen. When the colchicine injection was given at diakinesis, a significant decrease in the pollen production per bud was observed ( < 0.001). The morphology of the colchicine-induced 2n pollen was similar to that of the natural 2n pollen in its ectexine structure. The pollen germination experiments revealed that there was also no significant difference in germination rates between the induced diploid pollen and natural 2n pollen grains, and 68 triploids were created by crossing colchicine-induced pollen. Our findings revealed that colchicine injection could induce to produce 2n pollen and will not lead to dysfunction of induced diploid pollen.in vitroPopulus tomentosapP. tomentosa


2021 ◽  
Vol 12 ◽  
Author(s):  
Shiduo Niu ◽  
Xiong Du ◽  
Dejie Wei ◽  
Shanshan Liu ◽  
Qian Tang ◽  
...  

Global warming has increased the occurrence of high temperature stress in plants, including maize, resulting in decreased the grain number and yield. Previous studies indicate that heat stress mainly damages the pollen grains and thus lowered maize grain number. Other field studies have shown that heat stress after pollination results in kernel abortion. However, the mechanism by which high temperature affect grain abortion following pollination remains unclear. Hence, this study investigated the field grown heat-resistant maize variety “Zhengdan 958” (ZD958) and heat-sensitive variety “Xianyu 335” (XY335) under a seven-day heat stress treatment (HT) after pollination. Under HT, the grain numbers of XY335 and ZD958 were reduced by 10.9% (p = 0.006) and 5.3% (p = 0.129), respectively. The RNA sequencing analysis showed a higher number of differentially expressed genes (DEGs) between HT and the control in XY335 compared to ZD958. Ribulose diphosphate carboxylase (RuBPCase) genes were downregulated by heat stress, and RuBPCase activity was significantly lowered by 14.1% (p = 0.020) in XY335 and 5.3% (p = 0.436) in ZD958 in comparison to CK. The soluble sugar and starch contents in the grains of XY335 were obviously reduced by 26.1 and 58.5%, respectively, with no distinct change observed in ZD958. Heat stress also inhibited the synthesis of grain starch, as shown by the low activities of metabolism-related enzymes. Under HT, the expression of trehalose metabolism genes in XY335 were upregulated, and these genes may be involved in kernel abortion at high temperature. In conclusion, this study revealed that post-pollination heat stress in maize mainly resulted in reduced carbohydrate availability for grain development, though the heat-resistant ZD958 was nevertheless able to maintain growth.


2017 ◽  
Vol 32 (1) ◽  
pp. 61-65 ◽  
Author(s):  
Natalia Georgieva ◽  
Ivelina Nikolova ◽  
Valentin Kosev ◽  
Yordanka Naydenova

The objective of this study was to evaluate the influence of two organic nanofertilizers, Lithovit and Nagro, on in vitro germination, pollen tube elongation and pollen grain viability of Pisum sativum L cv. Pleven 4. The effect of their application was high and exceeded data for the untreated control (44.2 and 47.23 % regarding pollen germination and pollen tube elongation, respectively), as well as the effect of the control organic algal fertilizer Biofa (17.5 and 27.9 %, respectively). Pollen grains were inoculated in four culture media. A medium containing 15% sucrose and 1% agar had the most stimulating impact on pea pollen grains. Pollen viability, evaluated by staining with 1% carmine, was within limits of 74.72-87.97%. The highest viability of pollen grains was demonstrated after the application of Nagro organic nano-fertlizer.


2013 ◽  
Vol 35 (4) ◽  
pp. 1116-1126 ◽  
Author(s):  
Taliane Leila Soares ◽  
Onildo Nunes de Jesus ◽  
Janay Almeida dos Santos-Serejo ◽  
Eder Jorge de Oliveira

The use of Passiflora species for ornamental purposes has been recently developed, but little is known about pollen viability and the potential for crossing different species. The objective of this study was to evaluate the pollen viability of six Passiflora species collected from different physiological stages of development through in vitro germination and histochemical analysis using dyes. The pollen was collected in three stages (pre-anthesis, anthesis and post-anthesis). Three compositions of culture medium were used to evaluate the in vitro germination, and two dyes (2,3,5-triphenyltetrazolium chloride, or TTC, and Lugol's solution) were used for the histochemical analysis. The culture medium containing 0.03% Ca(NO3) 4H2O, 0.02% of Mg(SO4 ).7H2O, 0.01% of KNO3, 0,01% of H3BO3, 15% sucrose, and 0.8% agar, pH 7.0, showed a higher percentage of pollen grains germinated. Anthesis is the best time to collect pollen because it promotes high viability and germination. The Lugol's solution and TTC dye overestimated the viability of pollen, as all accessions showed high viability indices when compared with the results obtained in vitro.


2021 ◽  
Vol 51 ◽  
Author(s):  
Deysi Jhoana Camayo Mosquera ◽  
Daniel Gerardo Cayón Salinas ◽  
Gustavo Adolfo Ligarreto Moreno

ABSTRACT Elaeis oleifera chromosomes are similar to those of E. guineensis, with close gene pools for the production of interspecific O x G hybrids. The pollen viability and germination of E. oleifera ‘Coarí’ and E. guineensis ‘La Mé’ were compared to their interspecific hybrid O x G (‘Coarí’ x ‘La Mé’). The pollen viability was determined by the acetocarmine staining method (0.5 %) and the pollen germination by in vitro incubation on agar-sucrose medium (1.2-11.0 g in 100 mL of distilled water). The pollen viability and germination of the ‘Coarí’ x ‘La Mé’ hybrid were significantly lower than those of their parents. The percentage of pollen viability by acetocarmine staining was higher than that of in vitro germination, indicating that not all pollen grains classified as viable germinated on the agar-sucrose medium. The pollen germination test is a more reliable indicator than the staining viability test, because the latter only reveals that the pollen contains the enzymes necessary to initiate germination, while the germination test determines the emission and development of the pollen tube.


2005 ◽  
Vol 130 (3) ◽  
pp. 341-347 ◽  
Author(s):  
Nadine Ledesma ◽  
Nobuo Sugiyama

The effects of high-temperature stress on pollen viability and in vitro and in vivo germinability were studied in two facultative, short-day strawberries (Fragaria ×ananassa Duch.), `Nyoho' and `Toyonoka.' Plants were exposed to two day/night temperature regimes of either 23 °C/18 °C (control) or 30 °C/25 °C (high temperature) from when the first inflorescence became visible until anthesis. Pollen viability in `Nyoho' was only slightly affected at 30 °C/25 °C when compared with pollen from plants grown at 23 °C/18 °C. In `Toyonoka', however, pollen viability was significantly lower at 30 °C/25 °C than at 23 °C/18 °C. The in vitro germination percentages were significantly lower in pollen from plants grown at 30 °C/25 °C and germinated at 30 °C than from plants grown at 23 °C/18 °C and germinated at 23 °C in both cultivars. But the percentages were much lower in `Toyonoka' than in `Nyoho', particularly at the 30 °C germination temperature. Pollen from plants grown at 23 °C/18 °C also extended longer pollen tubes than pollen grown at 30 °C/25 °C in both cultivars, but `Nyoho' had longer pollen tubes than `Toyonoka' at 30 °C/25 °C. Fluorescence microscopy revealed that most of the `Nyoho' pollen germinated on the stamen, elongated through the style and reached the ovule regardless of temperature treatment. In `Toyonoka', pollen germination and elongation were greatly inhibited at 30 °C/25 °C, resulting in unfertilized ovules. These results suggest that certain strawberry cultivars produce heat-tolerant pollen, which in turn could result in higher fruit set.


2014 ◽  
Vol 3 (3) ◽  
pp. 146-153
Author(s):  
Reshmi Chatterjee ◽  
Satadip Sarkar ◽  
GM Narasimha Rao

Pollen germination forms one of the most important stage post pollination prior to fertilization. This is essential for proper seed setting and seed development. In vitro pollen germination test is the most reliable way of assessing the pollen viability. In the present study pollen grains of seven genera under Apocynaceae family namely, Allamanda, Alstonia, Catharanthus, Nerium, Plumeria, Thevetia and Tabernaemontana were tested in some basic cultural media, such as Brewbaker’s media, 6% Glucose solution, 4% Calcium Nitrate solution and 3% Boron solution. Alstonia pollen grains exhibited highest percentage of germination rate in all the cultural media. Glucose and Brewbaker’s media is found to be highly suitable for efficient pollen germination in all the genera. Boron solution is effective for germination of pollen grains of tree species. In vitro pollen germination can be easily carried out in laboratories. These results can be utilised in plant breeding programmes to improve cultivar and varieties. DOI: http://dx.doi.org/10.3126/ije.v3i3.11074 International Journal of Environment Vol.3(3) 2014: 146-153


2013 ◽  
Vol 40 (5) ◽  
pp. 439 ◽  
Author(s):  
Chuc T. Nguyen ◽  
Vijaya Singh ◽  
Erik J. van Oosterom ◽  
Scott C. Chapman ◽  
David R. Jordan ◽  
...  

Sorghum (Sorghum bicolor (L.) Moench) is grown as a dryland crop in semiarid subtropical and tropical environments where it is often exposed to high temperatures around flowering. Projected climate change is likely to increase the incidence of exposure to high temperature, with potential adverse effects on growth, development and grain yield. The objectives of this study were to explore genetic variability for the effects of high temperature on crop growth and development, in vitro pollen germination and seed-set. Eighteen diverse sorghum genotypes were grown at day : night temperatures of 32 : 21°C (optimum temperature, OT) and 38 : 21°C (high temperature, HT during the middle of the day) in controlled environment chambers. HT significantly accelerated development, and reduced plant height and individual leaf size. However, there was no consistent effect on leaf area per plant. HT significantly reduced pollen germination and seed-set percentage of all genotypes; under HT, genotypes differed significantly in pollen viability percentage (17–63%) and seed-set percentage (7–65%). The two traits were strongly and positively associated (R2 = 0.93, n = 36, P < 0.001), suggesting a causal association. The observed genetic variation in pollen and seed-set traits should be able to be exploited through breeding to develop heat-tolerant varieties for future climates.


1970 ◽  
Vol 40 (1) ◽  
pp. 93-95 ◽  
Author(s):  
Feruzan Dane ◽  
Nuran Ekici

In vitro and in vivo studies on pollen germination of Paeonia tenuifolia L. (Paeoniaceae) revealed that pollen grains are shed at two-celled stage. Normal and abnormal pollens were observed. Pollen viability was recorded between 55 and 75%. In vitro studies revealed 85% germination and usually the germination was monosphonic. Some pollen tubes with swollen tube tip and undulations were found. Styles and stigma were found to contain many pollen tubes 24 hrs after pollination. Key words: Paeonia tenuifolia; Pollen tube; In vitro growth; In vivo growth  DOI: http://dx.doi.org/10.3329/bjb.v40i1.8003 Bangladesh J. Bot. 40(1): 93-95, 2011 (June)


Sign in / Sign up

Export Citation Format

Share Document