Promoter of the wheat lipid transfer protein, TdLTP4, drives leaf-preferential expression in transgenic Arabidopsis plants

2019 ◽  
Vol 46 (3) ◽  
pp. 275
Author(s):  
Héla Safi ◽  
Nebras Belgaroui ◽  
Khaled Masmoudi ◽  
Faiçal Brini

In a previous report, a gene encoding a durum wheat lipid transfer protein, TdLTP4, was characterised as induced by abiotic and biotic stresses. In the present work, we investigated the regulation of the gene TdLTP4. A TdLTP4 promoter (PrTdLTP4) region of around 868-bp was isolated and sequenced. Its analysis revealed the presence of several DNA boxes known to be important mainly in the regulation of genes expressed under abiotic stress (salt and dehydration), abscisic acid (ABA) and pathogen responsiveness. The whole PrTdLTP4 fragment was fused to the reporter gene β-glucuronidase (gusA) and analysed in transgenic Arabidopsis plants. Histochemical assays of transgenic Arabidopsis plants showed that the 868-bp fragment of TdLTP4 gene promoter was found to be sufficient for both spatial and temporal patterns of its expression. Under control conditions, GUS histochemical staining was observed significantly only in young leaves of 8- and 12-day-old plants. Whereas after stress challenge especially with NaCl and mannitol, GUS transcripts expression increased substantially in leaves of 30-day-old transgenic seedlings. Real-time qPCR expression analysis of the gusA gene, confirmed the results of histochemical assays. Taken together these data provide evidence that PrTdLTP4 functions as abiotic-stress-inducible promoter in a heterologous dicot system and could be an excellent tool for future crop improvement.

2004 ◽  
Vol 161 (4) ◽  
pp. 449-458 ◽  
Author(s):  
Guohai Wu ◽  
Albert J. Robertson ◽  
Xunjia Liu ◽  
Ping Zheng ◽  
Ronald W. Wilen ◽  
...  

Author(s):  
Zulema Gonzalez-Klein ◽  
Bruno Cuevas-Zuviria ◽  
Andrea Wangorsch ◽  
Guadalupe Hernandez-Ramirez ◽  
Diego Pazos-Castro ◽  
...  

Molecules ◽  
2021 ◽  
Vol 26 (2) ◽  
pp. 256
Author(s):  
Andrea O’Malley ◽  
Swanandi Pote ◽  
Ivana Giangrieco ◽  
Lisa Tuppo ◽  
Anna Gawlicka-Chruszcz ◽  
...  

(1) Background: Non-specific lipid transfer proteins (nsLTPs), which belong to the prolamin superfamily, are potent allergens. While the biological role of LTPs is still not well understood, it is known that these proteins bind lipids. Allergen nsLTPs are characterized by significant stability and resistance to digestion. (2) Methods: nsLTPs from gold kiwifruit (Act c 10.0101) and pomegranate (Pun g 1.0101) were isolated from their natural sources and structurally characterized using X-ray crystallography (3) Results: Both proteins crystallized and their crystal structures were determined. The proteins have a very similar overall fold with characteristic compact, mainly α-helical structures. The C-terminal sequence of Act c 10.0101 was updated based on our structural and mass spectrometry analysis. Information on proteins’ sequences and structures was used to estimate the risk of cross-reactive reactions between Act c 10.0101 or Pun g 1.0101 and other allergens from this family of proteins. (4) Conclusions: Structural studies indicate a conformational flexibility of allergens from the nsLTP family and suggest that immunoglobulin E binding to some surface regions of these allergens may depend on ligand binding. Both Act c 10.0101 and Pun g 1.0101 are likely to be involved in cross-reactive reactions involving other proteins from the nsLTP family.


Sign in / Sign up

Export Citation Format

Share Document