Immature stages of Euchirinae (Coleoptera:Scarabaeoidea): genera Cheirotonus and Propomacrus with comments on their phylogeny based on larval and adult characters

2011 ◽  
Vol 25 (4) ◽  
pp. 282 ◽  
Author(s):  
Petr Šípek ◽  
Petr Janšta ◽  
David Král

We report the discovery of the larvae of Propomacrus bimucronatus (Pallas, 1781) in their natural habitat; providing notes on their biology based on field observations and laboratory-bred specimens. We give a detailed description of Cheirotonus formosanus Ohaus, 1913 and P. cypriacus Alexis & Markis, 2002 larvae as well as a redescription of the immature stages of P. bimucronatus and present the first diagnosis of larval Euchirinae. Based on 105 morphological and ecological characters of adults and larvae in 24 taxa of Scarabaeoidea, we discuss the phylogenetic relationships of Euchirinae within the group. Our results corroborate Euchirinae monophyly, supported by two larval synapomorphic characters; however, no adult autapomorphic characters were detected. The results of 15 separate phylogenetic analyses (differing in the set of terminalia, characters and in the optimality criteria) indicate a possible sister group relationship between Euchirinae and a clade comprising Melolonthinae + Rutelinae + Dynastinae, with Cetoniinae being a sister group to the whole clade. Larval characters represent a valuable source of information for the systematics of Scarabaeoidea; however, special effort should be paid to improve the still unsatisfactory sampling of immature data.


2011 ◽  
Vol 143 (6) ◽  
pp. 662-673 ◽  
Author(s):  
Marc Pollet ◽  
Christoph Germann ◽  
Marco Valerio Bernasconi

AbstractMedetera Fischer von Waldheim is the most speciose genus in the Medeterinae, with a nearly ubiquitous global distribution. Phylogenetic relationships within Medetera and between Medetera and four other medeterine genera were investigated using mitochondrial (COI, 16S) and nuclear (18S) markers to test morphological hypotheses. Our results confirm most of Bickel's hypotheses. Thrypticus Gerstäcker shows a sister-group relationship with Medetera + Dolichophorus Lichtwardt. The Medetera species included here split into two clades. One clade corresponds to the M. diadema L. – veles Loew species group sensu Bickel. The second clade is largely composed of the M. apicalis (Zetterstedt) species group sensu Bickel and the M. aberrans Wheeler species group sensu Bickel + Dolichophorus. Although most Medeterinae are associated with plants (mainly trees), species in at least two separate lineages demonstrate a secondary return to terrestrial habitats. The implication of this evolutionary phenomenon is briefly discussed.



2012 ◽  
Vol 279 (1737) ◽  
pp. 2396-2401 ◽  
Author(s):  
Rachunliu G. Kamei ◽  
Diego San Mauro ◽  
David J. Gower ◽  
Ines Van Bocxlaer ◽  
Emma Sherratt ◽  
...  

The limbless, primarily soil-dwelling and tropical caecilian amphibians (Gymnophiona) comprise the least known order of tetrapods. On the basis of unprecedented extensive fieldwork, we report the discovery of a previously overlooked, ancient lineage and radiation of caecilians from threatened habitats in the underexplored states of northeast India. Molecular phylogenetic analyses of mitogenomic and nuclear DNA sequences, and comparative cranial anatomy indicate an unexpected sister-group relationship with the exclusively African family Herpelidae. Relaxed molecular clock analyses indicate that these lineages diverged in the Early Cretaceous, about 140 Ma. The discovery adds a major branch to the amphibian tree of life and sheds light on both the evolution and biogeography of caecilians and the biotic history of northeast India—an area generally interpreted as a gateway between biodiversity hotspots rather than a distinct biogeographic unit with its own ancient endemics. Because of its distinctive morphology, inferred age and phylogenetic relationships, we recognize the newly discovered caecilian radiation as a new family of modern amphibians.



2020 ◽  
Vol 3 (4) ◽  
pp. 352-356
Author(s):  
DANY AZAR ◽  
SIBELLE MAKSOUD

Psychodidae Newman, 1834 is a large family of small, hairy nematoceran dipterans, comprising more than 2,600 described extant species. It is currently subdivided into seven subfamilies: Bruchomyiinae Alexander, 1920, Horaiellinae Enderlein, 1936, Phlebotominae Rondani, 1840, Psychodinae Newman, 1834, Sycoracinae Jung, 1954, Trichomyiinae Tonnoir, 1922, and the fossil subfamily Protopsychodinae Stebner et al., 2015. Some authors consider the group to consist of two families, i.e., Psychodidae and Phlebotomidae (Williams, 1993; Azar et al., 1999). This fact is founded only on the hematophagous and medically important aspects of the phlebotomines, nevertheless this arrangement is unfounded, because the phylogenetic relationships between the psychodid subfamilies remain unresolved, even if there is a possible sister-group relationship between the Phlebotominae and Psychodinae (Curler & Moulton, 2012). We consider recognizing phlebotomines as a separate family would necessitate also giving separate familial status to all the currently recognized subfamilies, which is not adopted here.



2007 ◽  
Vol 21 (3) ◽  
pp. 263 ◽  
Author(s):  
Guilherme Schnell e Schuehli ◽  
Claudio José Barros de Carvalho ◽  
Brian M. Wiegmann

Hypotheses about the evolution of Muscidae have long been the subject of continuous re-evaluation and reinterpretation. Current understandings of the relationships among these flies are based mainly on a single set of characters and are therefore questionable. Our understanding of muscid phylogeny thus needs greater support and further corroboration from additional suites of characters. In the current study, we analysed phylogenetic relationships among 24 species of muscid flies (18 genera and six subfamilies) using 2989 characters derived from sequences of mitochondrial (COI and COII) and nuclear genes (CAD and EF-1α). Data from each gene partition were analysed both in combined and separate phylogenetic analyses using maximum parsimony, maximum likelihood, and Bayesian inference. Support was found for the monophyly of the Muscidae in all analyses and for a sister-group relationship between Coenosiini and Phaoniinae. The latter group was placed in a clade with sampled species of Reinwardtiini and Cyrtoneurininae. The genera Ophyra and Hydrotaea were placed in the Muscinae and a sister-group relationship for Musca and Stomoxys was supported. Sampled species of Polietina form a monophyletic lineage, while Morellia was found to be paraphyletic. Combined analysis of gene partitions improved support and resolution for resulting topologies despite significant incongruence between data partitions found through application of the Incongruence Length Difference test.



2009 ◽  
Vol 34 (1) ◽  
pp. 162-172 ◽  
Author(s):  
Katherine G. Mathews ◽  
Niall Dunne ◽  
Emily York ◽  
Lena Struwe

A phylogenetic study and taxonomic revision of the four currently accepted species of Bartonia (Gentianaceae, subtribe Swertiinae) were conducted in order to test species boundaries and interspecific relationships. Species boundaries were examined based on measurements of key quantitative and qualitative morphological characters as given in the original descriptions. Phylogenetic analyses were performed using molecular data from the nuclear internal transcribed spacer region and chloroplast DNA (trnL intron through the trnL-F spacer), separately and combined using parsimony and Bayesian methodologies, incorporating outgroups from subtribes Swertiinae and Gentianinae. The morphological study revealed that characters of one species, B. texana, represent a subset of the morphological variation found within B. paniculata, but that B. paniculata, B. verna, and B. virginica could all be separated from one another. The molecular phylogenetic analyses all found B. texana to nest in a clade with the two recognized subspecies of B. paniculata (subsp. paniculata and subsp. iodandra), making the latter paraphyletic. Bartonia texana is here reduced to subspecific rank, as Bartonia paniculata subsp. texana. Also, the phylogenetic analyses showed strong support for a sister group relationship between B. verna and B. virginica, as opposed to between B. paniculata and B. virginica as has been previously suggested.



1990 ◽  
Vol 68 (3) ◽  
pp. 556-578 ◽  
Author(s):  
Gregory W. Courtney

The cuticular structure of larval mountain midges (Diptera: Deuterophlebiidae) is described, with emphasis on cranial and mouthpart morphology. Homologies are suggested for musculature and external features of the head capsule. External morphology of the thorax and abdomen is described, and a system for deuterophlebiid larval chaetotaxy is presented. Also included is a discussion of the feeding behaviour of deuterophlebiid and blepharicerid larvae, and how differing morphological characteristics influence mechanisms of food acquisition. Larval morphology of the Deuterophlebiidae and other Nematocera provides support for (i) a sister-group relationship between the Deuterophlebiidae and Blephariceridae; (ii) a monophyletic Blephariceromorpha (sensu Wood and Borkent) composed of the Nymphomyiidae + (Deuterophlebiidae + Blephariceridae); and (iii) a sister-group relationship between the Blephariceromorpha and Psychodomorpha (sensu Wood and Borkent).



2007 ◽  
Vol 55 (3) ◽  
pp. 197 ◽  
Author(s):  
Paul M. Oliver ◽  
Mark N. Hutchinson ◽  
Steven J. B. Cooper

Diplodactylid geckos offer a model system for investigating the biogeographic history of Australia and adaptive radiations in the arid zone, but there is considerable uncertainty in the systematics of several key genera. We used sequence data from mitochondrial DNA to carry out a comprehensive analysis of phylogenetic relationships of geckos in the genus Diplodactylus. Parsimony and Bayesian analyses were highly concordant and allocated all species to one of two monophyletic clades, one comprising the species placed in the vittatus and conspicillatus species groups, the other comprising species placed in the stenodactylus and steindachneri species groups, plus D. byrnei, formerly in the vittatus group. The distinctness of these two clades is supported by external morphology of the digits, body and limb proportions, and osteology of the bones in the orbital region, and we use these characters to formally define the two clades as genera. We revive and expand the genus Lucasium for D. byrnei, D. steindachneri and the stenodactylus group, with the other species staying in a redefined Diplodactylus. The monotypic Rhynchoedura is distinct from Lucasium, although the Bayesian mtDNA analysis (but not parsimony) gives some support for a sister-group relationship between Lucasium and Rhynchoedura. Molecular data suggest that each of these clades represents a distinct radiation into semiarid and arid terrestrial habitats during the mid-Tertiary, well before the hypothesised Pliocene onset of major aridification.



2020 ◽  
Vol 96 (2) ◽  
pp. 455-498
Author(s):  
Kai Horst George

Uncovering the systematics of CopepodaHarpacticoida, the second-most abundant component of the meiobenthos after Nematoda, is of major importance for any further research dedicated especially to ecological and biogeographical approaches. Based on the evolution of the podogennontan first swimming leg, a new phylogenetic concept of the Ancorabolidae Sars and Cletodidae T. Scott sensu Por (Copepoda, Harpacticoida) is presented, using morphological characteristics. It confirms the polyphyletic status of the Ancorabolidae and its subfamily Ancorabolinae Sars and the paraphyletic status of the subfamily Laophontodinae Lang. Moreover, it clarifies the phylogenetic relationships of the so far assigned members of the family. An exhaustive phylogenetic analysis was undertaken using 150 morphological characters, resulting in the establishment of a now well-justified monophylum Ancorabolidae. In that context, the Ancorabolus-lineage sensu Conroy-Dalton and Huys is elevated to sub-family rank. Furthermore, the membership of Ancorabolina George in a rearranged monophylum Laophontodinae is confirmed. Conversely, the Ceratonotus-group sensu Conroy-Dalton is transferred from the hitherto Ancorabolinae to the Cletodidae. Within these, the Ceratonotus-group and its hypothesised sister-group Cletodes Brady are combined to form a monophyletic subfamily Cletodinae T. Scott, subfam. nov. Consequently, it was necessary to restructure the Ancorabolidae, Ancorabolinae and Laophontodinae and extend the Cletodidae to include the displacement and exclusion of certain taxa. Moreover, comparison of the Ancorabolidae, Cletodidae, Laophontoidea and other Podogennonta shows that the Ancorabolidae and Cletodidae form sister-groups in a monophylum Cletodoidea Bowman and Abele, which similarly has a sister-group-relationship with the Laophontoidea T. Scott. According to the present study, both taxa constitute a derived monophylum within the Podogennonta Lang.



Sign in / Sign up

Export Citation Format

Share Document