scholarly journals Q fever

2012 ◽  
Vol 33 (4) ◽  
pp. 170
Author(s):  
Robert Norton

Q fever is a zoonosis caused by the obligate intracellular bacterium Coxiella burnetii. North Queensland has some of the highest rates of Q fever notifications in Australia. The clinical diagnosis of Q fever can be difficult with non-specific symptoms. Up to 5% of cases will develop chronic Q fever with a high likelihood of endocarditis. Diagnosis is essentially by serology. In North Queensland cases have clustered in relatively new, semi-rural suburbs which lie adjacent to native bushland. Native mammals are attracted to new growth in these cleared areas, particularly after the wet season. There is little or no occupational contact with traditional sources of Q fever such as cattle. Seroprevalence studies on native mammals have shown higher levels of seropositivity in native mammals than in cattle. It is postulated that the increase in human cases seen from these areas are a direct effect of interaction between native mammals and humans. Further studies on environmental sampling is currently under way.

Author(s):  
Ayse Kilic ◽  
Hakan Kalender

Q fever is a zoonotic disease that occurs worldwide and is caused by the obligate intracellular bacterium Coxiella burnetii. Infected animals are usually asymptomatic, but infection can cause abortion and stillbirth in ruminants. The main purpose of this study was to evaluate prevalance of Coxiella burnetii infection in aborted and nonaborted sheep serum samples in Eastern Anatolia region by using enzyme-linked immunosorbent assay (ELISA). The determine of prevalance in sheep flocks from four provinces (Elazig, Malatya, Tunceli, Bitlis) and tested for anti-C.burnetii antibody detection, by means of Chekit Q fever Elisa kit. 350 serum samples obtained from flocks belonging aborted sheep showed that a total of 56 (16%) were detected seropositivity, whereas 171 serum samples obtained from nonaborted sheep flocks in 13 of the 171 (7.60%) for C.burnetii in seropositivity were observed. Coxiellosis should be considered an important cause of sheep with abortion history and nonaborted in Elazig and neighboring provinces.


2004 ◽  
Vol 72 (4) ◽  
pp. 2075-2080 ◽  
Author(s):  
Dario S. Zamboni ◽  
Michel Rabinovitch

ABSTRACT Coxiella burnetii, the agent of Q fever in humans and coxiellosis in other mammals, is an obligate intracellular bacterium which is sheltered and multiplies within typically large phagolysosome-like replicative vacuoles (LRVs). We have previously shown that, compared with fibroblasts, mouse resident peritoneal macrophages control the development of LRVs and bacterial multiplication within these vacuoles. Earlier experiments with the nitric oxide (NO) synthase inhibitor aminoguanidine (AG) revealed that the control is exerted by NO induced by the bacteria. We report here that phagocytosis of apoptotic-like, but not of aldehyde-killed, lymphocytes by the macrophages reduced the production of NO induced by the bacteria and increased the development of LRVs and, therefore, the total bacterial load in the cultures. Experiments with macrophages from mice deficient for inducible NO synthase (iNOS−/−) confirmed the involvement of NO in the control of infection, since neither apoptotic lymphocytes nor AG affected the development of LRVs in these phagocytes. Since macrophages are important for the clearance of apoptotic bodies and C. burnetii is able to induce apoptosis in human monocytes, the phenomenon shown here may be biologically relevant to the development of Q fever and coxiellosis.


2014 ◽  
Vol 20 (7) ◽  
pp. 642-650 ◽  
Author(s):  
T. Schoffelen ◽  
T. Sprong ◽  
C.P. Bleeker-Rovers ◽  
M.C.A. Wegdam-Blans ◽  
A. Ammerdorffer ◽  
...  

2019 ◽  
Vol 2019 ◽  
pp. 1-4
Author(s):  
Zanthia Wiley ◽  
Sujan Reddy ◽  
Kara M. Jacobs Slifka ◽  
David C. Brandon ◽  
John Jernigan ◽  
...  

Q fever is a zoonotic bacterial infection caused by Coxiella burnetii. Chronic Q fever comprises less than five percent of all Q fever cases and, of those, endocarditis is the most common presentation (up to 78% of cases), followed by vascular involvement. Risk factors for chronic Q fever with vascular involvement include previous vascular surgery, preexisting valvular defects, aneurysms, and vascular prostheses. The most common symptoms of chronic Q fever with vascular involvement are nonspecific, including weight loss, fatigue, and abdominal pain. Criteria for diagnosis of chronic Q fever include clinical evidence of infection and laboratory criteria (antibody detection, detection of Coxiella burnetii DNA, or growth in culture). Treatment of chronic Q fever with vascular involvement includes a prolonged course of doxycycline and hydroxychloroquine (≥18 months) as well as early surgical intervention, which has been shown to improve survival. Mortality is high in untreated chronic Q fever. We report a case of chronic Q fever with vascular involvement in a 77-year-old man with prior infrarenal aortic aneurysm repair, who lived near a livestock farm in the southeastern United States.


Microbiology ◽  
2014 ◽  
Vol 160 (12) ◽  
pp. 2718-2731 ◽  
Author(s):  
Jun Jiao ◽  
Xiaolu Xiong ◽  
Yong Qi ◽  
Wenping Gong ◽  
Changsong Duan ◽  
...  

The obligate intracellular Gram-negative bacterium Coxiella burnetii causes Q fever, a worldwide zoonosis. Here we labelled Cox . burnetii with biotin and used biotin-streptavidin affinity chromatography to isolate surface-exposed proteins (SEPs). Using two-dimensional electrophoresis combined with mass spectrometry, we identified 37 proteins through bioinformatics analysis. Thirty SEPs expressed in Escherichia coli (recombinant SEPs, rSEPs) were used to generate microarrays, which were probed with sera from mice experimentally infected with Cox. burnetii or sera from Q fever patients. Thirteen rSEPs were recognized as seroreactive, and the majority reacted with at least 50 % of the sera from mice infected with Cox. burnetii but not with sera from mice infected with Rickettsia rickettsii, R. heilongjiangensis, or R. typhi. Further, 13 proteins that reacted with sera from patients with Q fever did not react with sera from patients with brucellosis or mycoplasma pneumonia. Our results suggest that these seroreactive SEPs have potential as serodiagnostic antigens or as subunit vaccine antigens against Q fever.


1996 ◽  
Vol 7 (1) ◽  
pp. 45-48
Author(s):  
TJ Marrie ◽  
Linda Yates

Western immunoblotting was used to compare the immune response toCoxiella burnetiiphase I and phase II antigens of humans with acute and chronic Q fever with that of infected cats, rabbits, cows and raccoons. The cats, rabbits, cows and raccoons had an immunoblot profile similar to that of the human with chronic Q fever.


Cytokine ◽  
2016 ◽  
Vol 77 ◽  
pp. 196-202 ◽  
Author(s):  
Anne Ammerdorffer ◽  
Mark H.T. Stappers ◽  
Marije Oosting ◽  
Teske Schoffelen ◽  
Julia C.J.P. Hagenaars ◽  
...  

1998 ◽  
Vol 5 (6) ◽  
pp. 814-816 ◽  
Author(s):  
Christian Capo ◽  
Ioana Iorgulescu ◽  
Maryse Mutillod ◽  
Jean-Louis Mege ◽  
Didier Raoult

ABSTRACT A detailed analysis of the humoral response to Coxiella burnetii may provide insight into the pathogenesis of Q fever, a zoonosis caused by C. burnetii. The subclasses of C. burnetii-specific antibodies were determined by immunofluorescence in 20 patients with acute Q fever and 20 patients with chronic Q fever. Although immunoglobulin G1 (IgG1) and IgG3 antibodies were found in acute and chronic Q fever, neither IgG2 nor IgG4 was detected. The detection of IgG1 and IgG3 antibodies was not due to an increase of the IgG1 and IgG3 subclasses. Moreover, IgG1 and IgG3 antibodies were not correlated, suggesting that they may play different roles in Q fever.


Sign in / Sign up

Export Citation Format

Share Document