The fire pulse: wildfire stimulates flux of aquatic prey to terrestrial habitats driving increases in riparian consumers

2010 ◽  
Vol 67 (3) ◽  
pp. 570-579 ◽  
Author(s):  
Rachel L. Malison ◽  
Colden V. Baxter

We investigated the midterm effects of wildfire (in this case, five years after the fire) of varying severity on periphyton, benthic invertebrates, emerging adult aquatic insects, spiders, and bats by comparing unburned sites with those exposed to low severity (riparian vegetation burned but canopy intact) and high severity (canopy completely removed) wildfire. We observed no difference in periphyton chlorophyll a or ash-free dry mass among different burn categories but did observe significantly greater biomass of benthic invertebrates in both high severity burned and unburned reaches versus low severity burned reaches. Moreover, a significantly greater flux of adult aquatic insect emergence occurred at sites that experienced high severity fire versus low severity burned and unburned sites. The greatest number of spiders and bat echolocation calls were also observed at sites of high severity fire. Our results suggest that fires of different severity may have very different affects on stream-riparian food webs and that high severity wildfire may lead to an extended “fire pulse” that stimulates aquatic productivity and flux of prey to terrestrial habitats, driving local increases in riparian consumers.

2019 ◽  
Vol 70 (4) ◽  
pp. 541 ◽  
Author(s):  
Martha J. Zapata ◽  
S. Mažeika P. Sullivan

Variability in the density and distribution of adult aquatic insects is an important factor mediating aquatic-to-terrestrial nutritional subsidies in freshwater ecosystems, yet less is understood about insect-facilitated subsidy dynamics in estuaries. We surveyed emergent (i.e. adult) aquatic insects and nearshore orb-weaving spiders of the families Tetragnathidae and Araneidae in a subtropical estuary of Florida (USA). Emergent insect community composition varied seasonally and spatially; densities were lower at high- than low-salinity sites. At high-salinity sites, emergent insects exhibited lower dispersal ability and a higher prevalence of univoltinism than low- and mid-salinity assemblages. Orb-weaving spider density most strongly tracked emergent insect density rates at low- and mid-salinity sites. Tetragnatha body condition was 96% higher at high-salinity sites than at low-salinity sites. Our findings contribute to our understanding of aquatic insect communities in estuarine ecosystems and indicate that aquatic insects may provide important nutritional subsidies to riparian consumers despite their depressed abundance and diversity compared with freshwater ecosystems.


2017 ◽  
Vol 79 (3) ◽  
pp. 225-232 ◽  
Author(s):  
Kaleb K. Heinrich ◽  
Kelsey M. Robson ◽  
Colden V. Baxter

Traditionally, exploration of ecosystems in the context of undergraduate education has been restricted to connections within conventionally defined habitats (i.e., within a stream, within a forest). Further, instruction regarding the aquatic-terrestrial interface has emphasized directional inputs from land to water. However, a relatively new body of research has characterized reciprocal interactions and draws attention to fluxes from water to land, including the emergence of aquatic insects that serve as prey for terrestrial predators. We present a guide to an inquiry-based lesson for undergraduate biology that explores interactions and connections across aquatic and terrestrial habitat boundaries. The focus is on cross-habitat linkages within ecosystems, specifically addressing the question, What is the role of insect emergence in connecting the web of life linking aquatic and terrestrial habitats and organisms? Students (1) engage with a documentary film, (2) explore insect emergence and make observations of riparian insectivores, (3) explain the collected data, (4) elaborate on alternative study designs and a measure of ecosystem health, and (5) evaluate their new understanding. This lesson addresses core concepts and competencies for undergraduate biology education, as identified in the Vision and Change report.


Author(s):  
T. Kubendran ◽  
M. Ramesh

<div><p><em>The Western Ghats, running parallel to the west coast of India between 8° N and 21° N is a prominent feature of the peninsular India. In freshwater biodiversity hotspots like the Western Ghats, no information is available on activates and ecological role of adult aquatic insect in the riparian zone of streams.</em><strong><em> </em></strong><em>Most adult aquatic insects that emerge from streams live briefly in the nearby riparian zone. Adult activities, such as mating dispersal and feeding influence their distribution in the terrestrial habitat. An observation at Kurangani streams, Western Ghats, India has shown that both numbers and biomass of adult aquatic insects are greatest in the near stream vegetation; however, adult insects can be relatively common 1 to 10 feet from the stream. Why because, adult aquatic insects are abundant and they are primary food resource for many riparian insectivores. The role of adult aquatic insects in the riparian zone must be better understood for riparian and aquatic food chain to be complete. </em></p></div>


2007 ◽  
Vol 58 (8) ◽  
pp. 725 ◽  
Author(s):  
Eric K. W. Chan ◽  
Yixin Zhang ◽  
David Dudgeon

The contribution of adult aquatic insects to riparian prey availability at four sites along three hillstreams in Hong Kong was estimated during 2004–2006 dry and wet seasons using light traps deployed at different distances from the banks. The number and biomass of aquatic and terrestrial insects collected were markedly higher during the wet season. Numerically, aquatic insects (especially Chironomidae and Philopotamidae) remained a major catch component along banks throughout the year comprising 77% (range: 61–85%) of total insects. Their contribution to total biomass was higher in the wet season (mean: 50%, range: 33–62%) than during the dry season (mean: 21%, range: 8–45%). Aquatic insect abundance decreased with increasing distance from streams during both seasons: numbers at 10–20 m distance were less than 45% of those at the banks, declining to less than 13% at 80 m distance. No such decline with distance was observed for terrestrial insects, but the limited dispersal of aquatic insects meant total insect catches were highest along stream banks. Changes in biomass with distance from streams were similar to those for abundance. Adult aquatic insects may represent an important water-to-land energy subsidy for riparian predators in Hong Kong, but the magnitude varied seasonally and fell sharply with increasing distance from streams.


2019 ◽  
Vol 70 (4) ◽  
pp. 609
Author(s):  
Martha J. Zapata ◽  
S. Mažeika P. Sullivan

Variability in the density and distribution of adult aquatic insects is an important factor mediating aquatic-to-terrestrial nutritional subsidies in freshwater ecosystems, yet less is understood about insect-facilitated subsidy dynamics in estuaries. We surveyed emergent (i.e. adult) aquatic insects and nearshore orb-weaving spiders of the families Tetragnathidae and Araneidae in a subtropical estuary of Florida (USA). Emergent insect community composition varied seasonally and spatially; densities were lower at high- than low-salinity sites. At high-salinity sites, emergent insects exhibited lower dispersal ability and a higher prevalence of univoltinism than low- and mid-salinity assemblages. Orb-weaving spider density most strongly tracked emergent insect density rates at low- and mid-salinity sites. Tetragnatha body condition was 96% higher at high-salinity sites than at low-salinity sites. Our findings contribute to our understanding of aquatic insect communities in estuarine ecosystems and indicate that aquatic insects may provide important nutritional subsidies to riparian consumers despite their depressed abundance and diversity compared with freshwater ecosystems.


Author(s):  
Nguyen Van Hieu ◽  
Nguyen Van Vinh

An intensive field survey on aquatic insects of Me Linh Station for Biodiversity in Vinhphuc province was conducted in December 2015. Specimens were collected at 8 different sites and aquatic insects were collected both quantitatively by Surber net and qualitatively by hand net, pond net. As a result, a total of 110 aquatic insect species belonging to 98 genera, 49 families and 9 orders were recognized. Among these, the order Ephemeroptera had the highest species number with 26 species, followed by Odonata with 25 species, Trichoptera with 18 species, Coleoptera with 15 species, Hemiptera with 11 species, Diptera with 9 species. Lepidoptera, Plecoptera and Megaloptera had the lowest of species number, represented by 3 species of Lepidoptera, 2 species of Plecoptera and 1 species of Megaloptera. Besides, the quantitative analysis results and the functional feeding groups were provided.


2014 ◽  
Vol 43 (2) ◽  
Author(s):  
Janina Dziekońska-Rynko ◽  
Jerzy Rokicki ◽  
Katarzyna Mierzejewska

AbstractThe availability of aquatic insects (Odonata: Coenagrionidae, Libellulidae and Trichoptera: Integripalpia) as potential intermediate hosts for the nematode Contracaecum rudolphii Hartwich, 1964 sensu lato was studied under laboratory conditions. The infective material consisted of nematode eggs, newly hatched larvae, as well as in vitro infected cyclopoid copepods. High prevalence and intensity of infection associated with a low mortality of aquatic insect larvae suggests that they may serve as intermediate hosts for C. rudolphii and constitute a major reservoir of C. rudolphii larvae in aquatic habitats.


2020 ◽  
Vol 29 (7) ◽  
pp. 611
Author(s):  
Breeanne K. Jackson ◽  
S. Mažeika P. Sullivan

Fires are a common feature of many landscapes, with numerous and complex ecological consequences. In stream ecosystems, fire can strongly influence fluvial geomorphic characteristics and riparian vegetation, which are structural components of stream–riparian ecosystems that contribute to biodiversity and ecosystem function. However, the effects of fire severity on stream–riparian ecosystems in California’s Sierra Nevada region (USA) are not well described, yet critical for effectively informing fire management and policy. At 12 stream reaches paired by fire severity (one high-severity burned, one low-severity burned), no significant differences were found in riparian plant community cover and composition or stream geomorphic characteristics 2–15 years following wildfire. In addition, minimal changes in riparian vegetation and stream geomorphic properties were observed in the first summer following the extensive and severe Rim Fire. However, an upstream-to-downstream influence of multiple fire occurrences was observed over the previous 81 years within each catchment on stream geomorphic metrics, including sediment size, embeddedness and channel geometry, at our study reaches. The inconsistent effects of wildfire on stream–riparian vegetation and geomorphic characteristics over space and time may be related to time since fire and precipitation.


Hydrobiologia ◽  
1981 ◽  
Vol 77 (1) ◽  
pp. 65-69 ◽  
Author(s):  
G. A. Bird ◽  
H. B. N. Hynes

Sign in / Sign up

Export Citation Format

Share Document