Historic and current genetic population structure in two pond-dwelling macroinvertebrates in massively altered Australian woodland landscapes

2010 ◽  
Vol 61 (11) ◽  
pp. 1318 ◽  
Author(s):  
Hania Lada ◽  
Carla Neville ◽  
Briarna Lacey ◽  
Ralph Mac Nally ◽  
P. Sam Lake ◽  
...  

Aquatic ecosystems around the world have been massively altered through vegetation clearance and changed flow regimes accompanying agricultural development. Impacts may include disrupted dispersal for aquatic species. We investigated this in lentic (standing) waterbodies in agricultural and predominantly forested landscapes of the box-ironbark region of central Victoria, Australia. We hypothesised that higher representation in forested than agricultural landscapes (i.e. ‘forest-bias’) for a species may reflect an ability to disperse more easily through the former, resulting in lower genetic structure in forested than in agricultural landscapes. Conversely, ‘cosmopolitan’ species would show no difference in genetic structure between landscape types. Molecular genetic analyses of a forest-biased diving beetle, Necterosoma wollastoni, and a cosmopolitan waterboatman, Micronecta gracilis, revealed the following, for both species: (1) no evidence for long-term barriers to gene flow in the region, (2) lack of contemporary genetic differentiation over 30 000 km2 and (3) random distribution of related genotypes in space, implying that neither forest nor farmland inhibits their dispersal in a concerted fashion. Taken together, these results indicate very high gene flow and dispersal in the past and present for both these species. Massive landscape change may have little impact on movement patterns of lentic invertebrates that have evolved high dispersal capabilities.

2009 ◽  
Vol 2009 ◽  
pp. 1-15 ◽  
Author(s):  
Akiko Kyuno ◽  
Mifue Shintaku ◽  
Yuko Fujita ◽  
Hiroto Matsumoto ◽  
Motoo Utsumi ◽  
...  

We sequenced the mitochondrial ND4 gene to elucidate the evolutionary processes ofBathymodiolusmussels and mytilid relatives. Mussels of the subfamily Bathymodiolinae from vents and seeps belonged to 3 groups and mytilid relatives from sunken wood and whale carcasses assumed the outgroup positions to bathymodioline mussels. Shallow water mytilid mussels were positioned more distantly relative to the vent/seep mussels, indicating an evolutionary transition from shallow to deep sea via sunken wood and whale carcasses.Bathymodiolus platifronsis distributed in the seeps and vents, which are approximately 1500 km away. There was no significant genetic differentiation between the populations. There existed high gene flow betweenB. septemdierumandB. breviorand low but not negligible gene flow betweenB. marisindicusandB. septemdierumorB. brevior, although their habitats are 5000–10 000 km away. These indicate a high adaptability to the abyssal environments and a high dispersal ability ofBathymodiolusmussels.


2006 ◽  
Vol 7 (2) ◽  
pp. 309-313 ◽  
Author(s):  
Nusha Keyghobadi ◽  
Katherine P. Unger ◽  
Jason D. Weintraub ◽  
Dina M. Fonseca

2019 ◽  
Vol 191 (3) ◽  
pp. 381-398 ◽  
Author(s):  
Cecilia F Fiorini ◽  
Marina Dutra Miranda ◽  
Viviane Silva-Pereira ◽  
Ariane Raquel Barbosa ◽  
Ubirajara De Oliveira ◽  
...  

Abstract The campo rupestre is a Neotropical azonal vegetation. Its disjoint distribution and the fact that it is an old climatic buffered infertile landscape (OCBIL) have been associated with the high diversity and endemism observed in this environment. Here, we tested whether a micro-endemic species from campo rupestre shows: (1) limited zygotic gene flow; (2) lower gametic than zygotic gene flow structure; (3) substrate-driven genetic structure and (4) no evidence of Pleistocene local extinction or recolonization. By sequencing intergenic plastid regions, phenotyping inter simple sequence repeats (ISSR) and modelling present and past species suitability distributions for Vellozia auriculata we conclude that (1) zygotic gene flow is limited; (2) gametic gene flow is recurrent, but limited by elevation and distance; (3) there is no support for genetic structure driven by substrate and (4) Pleistocene climatic changes did not restrict the species to refugia, with local persistence. As long-term gene flow restrictions may lead to differentiation and speciation, our data helps to corroborate that the campo rupestre is both a cradle (due to low zygotic gene flow, prolonged isolation and consequent differentiation) and a lineage museum (due to local survival during climate oscillations). We highlight two distinct evolutionarily significant units (ESU), providing information for better conservation practice.


Heredity ◽  
2004 ◽  
Vol 92 (5) ◽  
pp. 434-445 ◽  
Author(s):  
C Pampoulie ◽  
E S Gysels ◽  
G E Maes ◽  
B Hellemans ◽  
V Leentjes ◽  
...  

1999 ◽  
Vol 56 (5) ◽  
pp. 803-813 ◽  
Author(s):  
Axayácatl Rocha-Olivares ◽  
Russell D Vetter

The genetic structure and phylogeography of 88 rosethorn rockfish (Sebastes helvomaculatus) from five localities (California, Oregon, British Columbia, and two in the Gulf of Alaska) were analyzed using DNA sequences from the mitochondrial control region. High levels of genetic diversity (h > 85%) and significant population genetic structure (FST = 0.13, P < 0.001; AMOVA ΦST = 0.15, P << 0.001) were found. A significant genetic break was detected (ΦCT = 0.22, P << 0.001) coinciding with the transition zone between the Oregonian and Aleutian zoogeographic provinces and consistent with retention and dispersal mechanisms associated with the oceanographic circulation of the region. A correlation between geographic distance and population genetic distance supported the hypothesis of gene flow dominated by pelagic-phase dispersal. Oregonian province populations had higher haplotype diversity, with >70% of the individuals representing a recent lineage absent in the Aleutian province. This suggests a limited northward dispersal across the zoogeographic boundary. The phylogeographic stucture may be due to a founder effect in the Aleutian province or an ocean circulation driven pseudo-vicariance. These results demonstrate that organisms with protracted pelagic-phase stages and high dispersal capability can exhibit population genetic structure that reflects their historical demography and present dispersal patterns.


Sign in / Sign up

Export Citation Format

Share Document