foliar pathogen
Recently Published Documents


TOTAL DOCUMENTS

57
(FIVE YEARS 19)

H-INDEX

11
(FIVE YEARS 3)

Author(s):  
Thomas Assinger ◽  
James Fountaine ◽  
Stefano Torriani ◽  
Salvatore Accardo ◽  
Regula Bernhard-Frey ◽  
...  

AbstractWinter barley (Hordeum vulgare L.) is the third most cultivated crop after corn and wheat in Austria but one of the most challenging for disease control. The foliar pathogen Ramularia collo-cygni B. Sutton and J.M. Waller, causing Ramularia leaf spots (RLS), is one of the most important diseases in barley. In the recent years, control has only been achieved using fungicide mixtures including the multi-site inhibitor chlorothalonil, however this compound is totally banned in the EU. The objective of this study was to assess fungicide dose-rates and spray mixtures for RLS control. Furthermore, a field monitoring within the main barley growing areas of Austria was carried out, to analyse the current resistance situation to DMI and SDHI fungicides, which are still the backbone in RLS control. The results indicate that only the mixture with chlorothalonil achieved a good RLS control. Prothioconazole or benzovindiflupyr (alone or additively) decrease the severity of RLS but increase the local frequency of Cyp51 and sdhC mutations, especially the high dose rates. Based on a low Cyp51 mutation frequency of 16% in untreated control this frequency increased over 3.8 times following an application with 300 g ha−1 prothioconazole. The cumulative-sdhC mutations were even more increased after an application with benzovindiflupyr. This study showed that Ramularia collo-cygni is present in 91% of barley fields presented in this field survey. Widespread use of chlorothalonil fungicide maintained a low to moderate mutation frequency (Cyp51-I325T, Cyp51-I328L, sdhC-H146R and sdhC-H153R) in Austrian barley regions with no increase between 2017 and 2019.


2021 ◽  
Author(s):  
Minette Havenga ◽  
Brenda D. Wingfield ◽  
Michael J. Wingfield ◽  
Léanne L. Dreyer ◽  
Francois Roets ◽  
...  

2021 ◽  
Author(s):  
Yi Song ◽  
Xue-Cheng Zhang ◽  
Yichun Qiu ◽  
Annika Briggs ◽  
Yves Millet ◽  
...  

Despite the importance of the root immune system in the interaction with rhizosphere microbes, the majority of genetic screens for immunity regulators have been performed in leaves. A previous screen identified 27 hsm (hormone-mediated suppression of MAMP-triggered immunity) mutants that are impaired in jasmonic acid (JA)-mediated suppression of pattern-triggered immunity (PTI) in roots. Here we characterized 16 of the hsm mutants that retain JA sensitivity and are potential negative regulators of root immunity. We found that the majority of hsm mutants show enhanced resistance to Fusarium, a root fungal pathogen; however, only a subset are more resistant to a foliar pathogen. Surprisingly, 12 of 16 hsm mutants are also impaired in abscisic acid (ABA)-mediated suppression of PTI, suggesting a largely shared pathway between JA- and ABA-mediated immune suppression in roots. Although all hsm mutants are insensitive to JA-mediated suppression of root immunity, hsm4 shows hypersensitivity to JA-mediated root growth inhibition and JA-induced gene expression. Consistently, hsm4 is more resistant to leaf pathogens, suggesting that HSM4 is a negative regulator of both root and leaf immunity. Hsm4 was mapped to a mutation in a conserved ARM-repeat protein homologous to yeast SDA1, which has been reported to regulate 60S ribosome biogenesis. As translational reprogramming is a critical layer of immune regulation, this work suggests that AtSDA1 is a novel negative translational regulator of immunity. Additionally, a comprehensive characterization of all 16 hsm mutants provides a genetic toolkit to identify novel mechanisms that regulate root immunity.


2021 ◽  
Author(s):  
Minette Havenga ◽  
Brenda D. Wingfield ◽  
Michael J. Wingfield ◽  
Léanne L. Dreyer ◽  
Francois Roets ◽  
...  

2021 ◽  
Vol 2 (1) ◽  
Author(s):  
Clare R. Taylor ◽  
Niklaus J. Grünwald

Abstract Background Phytophthora species are well known as important or emerging pathogens. The genus Rhododendron is of considerable importance to plant regulatory agencies because it is host to many Phytophthora species, most notably, P. ramorum and P. kernoviae. Few studies have directly contrasted the epidemiology of different Phytophthora spp. on a given host. Methods We investigated aspects of the foliar epidemiology (lesion size, sporulation and temperature responses) of P. cactorum, P. cambivora, P. cinnamomi, P. citrophthora, P. foliorum, P. kernoviae, P. lateralis, P. nemorosa, P. nicotianae, P. plurivora, P. ramorum and P. syringae on Rhododendron in detached leaf, whole plant chamber, and field studies. Results P. syringae stood out as it appeared to be a relatively weak pathogen, showing no sporulation and low levels of disease severity, except at low temperatures. P. nicotianae was consistently able to grow at higher temperatures than any of the other Phytophthora spp. and showed higher aggressiveness than any of the other species at high temperatures. P. cinnamomi and P. cactorum, typically thought of as root-infecting species, were able to cause as much foliar disease as P. syringae, a foliar pathogen. P. kernoviae was consistently among the most aggressive species with the highest sporulation. Conclusion These results provide novel insights into the comparative epidemiology of these important established and emerging Phytophthora species.


2021 ◽  
Vol 47 (3) ◽  
pp. 116-122
Author(s):  
Glynn Percival

Pear rust is a foliar pathogen of ornamental and fruiting pear trees. Unmanaged, yield and aesthetic losses can be severe. Over-reliance on synthetic fungicides means novel means of pathogen management are required. Field trials were conducted using pear (Pyrus cv. Conference) to assess the efficacy of electrolysed oxidizing water (EO water) as a rust protective compound. A synthetic fungicide (boscalid + pyraclostrobin) spray program used for pear rust management was included for comparison. Each treatment was applied 4 times prior to the visible appearance of rust (April through June, i.e., preventatively). Studies were conducted in 2017 and repeated in 2018. Efficacy of EO water as a rust protectant compound was confirmed (increased leaf chlorophyll content, reduced leaf rust incidence and severity). The degree of leaf rust severity protection conferred was not statistically different from a boscalid + pyraclostrobin spray program. Results suggest 4 spray applications of EO water provides a useful addition to existing methods of pear rust management under field conditions that may have applicability against other foliar pathogens.


Author(s):  
Tobias B. Löser ◽  
Mark C. Mescher ◽  
Consuelo M. De Moraes ◽  
Monika Maurhofer

Rhizobacteria in the genus Pseudomonas can enhance plant resistance to a range of pathogens and herbivores. However, resistance to these different classes of plant antagonists is mediated by different molecular mechanisms, and the extent to which induced systemic resistance by Pseudomonas can simultaneously protect plants against both pathogens and herbivores remains unclear. We screened 12 root-colonizing Pseudomonas strains to assess their ability to induce resistance in Arabidopsis thaliana against a foliar pathogen (Pseudomonas syringae DC3000) and a chewing herbivore (Spodoptera littoralis). None of our 12 strains increased plant resistance against herbivory; however, four strains enhanced pathogen resistance, and one of these (Pseudomonas strain P97-38) also made plants more susceptible to herbivory. Phytohormone analyses revealed stronger SA induction in plants colonized by P97-38 (vs controls) following subsequent pathogen infection but weaker induction of JA-mediated defenses following herbivory. We found no effects of P97-38 inoculation on herbivore-relevant nutrients such as sugars and protein, suggesting that the observed enhancement of susceptibility to S. littoralis is due to effects on plant defense chemistry rather than nutrition. These findings suggest that Pseudomonas strains that enhance plant resistance to pathogens may have neutral or negative effects on resistance to herbivores and provide insight into potential mechanisms associated with effects on different classes of plant antagonists. Improved understanding of these effects has potentially important implications for the use of rhizobacteria inoculation in agriculture. Importance Plant-associated microbes have significant potential to enhance agricultural production, for example by enhancing plant resistance to pathogens and pests. Efforts to identify beneficial microbial strains typically focus on a narrow range of desirable plant traits; however, microbial symbionts can have complex effects on plant phenotypes, including susceptibility and resistance to different classes of plant antagonists. We examined the effects of 12 strains of Pseudomonas rhizobacteria on plant (Arabidopsis) resistance to a Lepidopteran herbivore and a foliar pathogen. None of our strains increased plant resistance against herbivory; however, four strains enhanced pathogen resistance, and one of these made plants more susceptible to herbivory (likely via effects on plant defense chemistry). These findings indicate that microbial strains that enhance plant resistance to pathogens can have neutral or negative effects on resistance to herbivores, highlighting potential pitfalls in the application of beneficial rhizobacteria as biocontrol agents.


2021 ◽  
Vol 47 (2) ◽  
pp. 85-95
Author(s):  
Glynn Percival ◽  
Sean Graham

Unmanaged, foliar pathogens of urban trees can be detrimental to tree health and aesthetics. Overreliance on synthetic fungicides increasingly means alternative means of pathogen management are now required. The purpose of these studies was to investigate the efficacy of 3 commercially available agents, harpin protein, salicylic acid derivative, and liquid chitosan, which can initiate induced resistance (IR) in plants. IR agents were applied independently and in combination with a synthetic fungicide (boscalid + pyraclostrobin) against 2 foliar pathogens (Venturia pirina and Guignardia aesculi) under field conditions with Pyrus communis ‘Williams’ Bon Chrétien’ and horse chestnut (Aesculus hippocastanum) acting as tree hosts. These agents were tested over 3 consecutive years. In 4 of 5 field studies, the use of an IR agent alone reduced pathogen symptom severity, increased fruit/seed yield, and enhanced leaf chlorophyll content. In virtually all studies, application of boscalid + pyraclostrobin at 2/3 strength plus an IR agent provided the same degree of pathogen control as boscalid + pyraclostrobin at full strength. Application of boscalid + pyraclostrobin at 1/3 strength plus an IR agent provided a reasonable degree of foliar pathogen control. Results showed that a combined mix of an IR agent with a 1/3 reduced dose of boscalid + pyraclostrobin was as effective at reducing symptom severity of 2 foliar pathogens as boscalid + pyraclostrobin applied at full strength, provided at least 4 sprays were applied during a growing season.


2021 ◽  
Vol 11 ◽  
Author(s):  
Cheng Zhou ◽  
Jingjing Zhu ◽  
Nana Qian ◽  
Jiansheng Guo ◽  
Congsheng Yan

Mounting evidence has indicated that beneficial rhizobacteria can suppress foliar pathogen invasion via elicitation of induced systemic resistance (ISR). However, it remains elusive whether long non-coding RNAs (lncRNAs) are involved in the mediation of the rhizobacteria-primed ISR processes in plants. Herein, we demonstrated the ability of the rhizobacterial strain Bacillus subtilis SL18r to trigger ISR in tomato plants against the foliar pathogen Botrytis cinerea. Comparative transcriptome analysis was conducted to screen differentially expressed lncRNAs (DELs) between the non-inoculated and SL18r-inoculated plants. Among these DELs, four variants of MSTRG18363 possessed conserved binding sites for miR1918, which negatively regulates immune systems in tomato plants. The expression of MSTRG18363 in tomato leaves was significantly induced by SL18r inoculation. The transcription of MSTRG18363 was negatively correlated with the expression of miR1918, but displayed a positive correlation with the transcription of the RING-H2 finger gene SlATL20 (a target gene of miR1918). Moreover, MSTRG18363-overexpressing plants exhibited the enhanced disease resistance, reduction of miR1918 transcripts, and marked increases of SlATL20 expression. However, the SL18r-induced disease resistance was largely impaired in the MSTRG18363-silenced plants. VIGS-mediated SlATL20 silencing also greatly weakened the SL18r-induced disease resistance. Collectively, our results suggested that induction of MSTRG18363 expression in tomato plants by SL18r was conducive to promoting the decoy of miR1918 and regulating the expression of SlATL20, thereby provoking the ISR responses against foliar pathogen infection.


Sign in / Sign up

Export Citation Format

Share Document