Validated age, growth and reproductive biology of Carcharhinus melanopterus, a widely distributed and exploited reef shark

2013 ◽  
Vol 64 (10) ◽  
pp. 965 ◽  
Author(s):  
Andrew Chin ◽  
Colin Simpfendorfer ◽  
Andrew Tobin ◽  
Michelle Heupel

Inadequate life-history information can compromise management of shark populations. The present study examined the life history of blacktip reef sharks (Carcharhinus melanopterus) from north-eastern Australia with predictions that they would show life-history patterns similar to those of other reef sharks species. Age and growth estimates were derived from vertebrae and five growth models. Males were 543–1390 mm total length (LST) and females were 514–1600 mm LST. Longevity was 10 years (males) and 15 years (females). Chemical marking confirmed annual band pair deposition but indicated probable age underestimation of large individuals. The logistic model was preferred (second-order Akaike information criterion (AICc) weight 0.7536), with growth parameter estimates of length at birth (L0) = 617 mm LST; asymptotic length (L∞) = 1585 mm LST; k (from logistic model) = 0.251 year–1. Males matured at 4.2 years (1050 mm LST) and females at 8.5 years (1335 mm LST), although further verification is needed. Mating and parturition occurred in summer and autumn, females having three or four pups per litter. Data were inconclusive in determining reproductive periodicity. These data contribute to the species management and conservation and suggest that the species may be sensitive to fishing pressure and habitat loss. The study also demonstrated potential complications in using vertebrae to estimate age and growth of chondrichthyan fishes.

2009 ◽  
Vol 67 (1) ◽  
pp. 125-134 ◽  
Author(s):  
Shane P. Griffiths ◽  
Gary C. Fry ◽  
Fiona J. Manson ◽  
Dong C. Lou

Abstract Griffiths, S. P., Fry, G. C., Manson, F. J., and Lou, D. C. 2010. Age and growth of longtail tuna (Thunnus tonggol) in tropical and temperate waters of the central Indo-Pacific. – ICES Journal of Marine Science, 67: 125–134. Age and growth of longtail tuna (Thunnus tonggol) were assessed by examination of annual growth increments in sectioned sagittal otoliths from 461 fish (238–1250 mm fork length, LF) sampled from tropical and temperate waters in the central Indo-Pacific between February 2003 and April 2005. Edge and microincrement analyses (presumed daily increments) suggest that longtail tuna deposit a single annual growth increment mainly between August and October. Age was, therefore, estimated for all fish by counting assumed annual growth increments. Ages ranged from 154 d to 18.7 years, with most fish being 3–9 years. Five growth models were fitted to length-at-age data, all of which indicated that the species is relatively slow-growing and long-lived. Recaptures of two tagged fish at liberty for 6.2 and 10.5 years support this notion. A bias-corrected form of Akaike's Information Criterion determined that the Schnute–Richards model provided the best fit to length-at-age data, with model parameter estimates (sexes combined) of L∞ = 135.4 cm LF, K = 22.3 year−1, t0 = 0.120 years, δ = 150.0, v = 0.019, and γ = 2.7 × 10−8. There was no significant difference in growth between sexes. The results suggest that longtail tuna grow more slowly and live longer than other tuna species of similar size. Coupled with their restricted neritic distribution, longtail tuna may be vulnerable to overexploitation by fisheries, and caution needs to be exercised in managing the species until more reliable biological and catch data are collected to assess the status of the population.


2021 ◽  
Vol 8 ◽  
Author(s):  
Kwang-Ming Liu ◽  
Chiao-Bin Wu ◽  
Shoou-Jeng Joung ◽  
Wen-Pei Tsai ◽  
Kuan-Yu Su

Age and growth information is essential for stock assessment of fish, and growth model selection may influence the accuracy of stock assessment and subsequent fishery management decision making. Previous descriptions of the age and growth of elasmobranchs relied mainly on the von Bertalanffy growth model (VBGM). However, it has been noted that sharks, skates and rays exhibit significant variety in size, shape, and life history traits. Given this variation, the VBGM may not necessarily provide the best fit for all elasmobranchs. This study attempts to improve the growth estimates by using multi-model approach to test four growth models—the VBGM, the two-parameter VBGM, the Robertson (Logistic) and the Gompertz models to fit observed or simulated length-at-age data for 38 species (44 cases) of elasmobranchs. The best-fit growth model was selected based on the bias corrected Akaike’s Information Criterion (AICc), the AICc difference, the AICc weight, the Bayesian Information Criterion (BIC), and the Leave-one-out cross-validation (LOOCV). The VBGM and two-parameter VBGM provide the best fit for species with slow growth and extended longevity (L∞ > 100 cm TL, 0.02 < k < 0.25 yr–1), such as pelagic sharks. For fast-growing small sharks (L∞ < 100 cm TL, kr or kg > 0.2 yr–1) in deep waters and for small-sized demersal skates/rays, the Robertson and the Gompertz models provide the best fit. The best-fit growth models for small sharks in shallow waters are the two-parameter VBGM and the Robertson model. Although it was found that the best-fit growth models for elasmobranchs were associated with their life history trait, exceptions were also noted. Therefore, a multi-model approach incorporating with the best-fit model selected for each group in this study was recommended in growth estimation for elasmobranchs.


2018 ◽  
Vol 69 (4) ◽  
pp. 562 ◽  
Author(s):  
Michael I. Grant ◽  
Jonathan J. Smart ◽  
William T. White ◽  
Andrew Chin ◽  
Leontine Baje ◽  
...  

In the central west Pacific region, silky sharks (Carcharhinus falciformis) are commonly taken in fisheries, forming up to 95% of incidental elasmobranch bycatch. The present study examined the life history of silky sharks (n=553) from Papua New Guinean waters. Age was analysed using sectioned vertebrae, and a multimodel approach was applied to the length-at-age data to fit growth models. Females ranged in length from 65.0- to 253.0-cm total length (TL), with the oldest estimated at 28 years. Males ranged in length from 68.4 to 271.3cm TL and were aged to a maximum of 23 years. The logistic model provided the best fitting growth parameter estimates of length at birth L0=82.7cm TL, growth coefficient g=0.14year–1 and asymptotic length L∞=261.3cm TL for the sexes combined. Females reached sexual maturity at 204cm TL and 14.0 years, whereas males reached maturity at 183cm TL and 11.6 years. The average litter size from 28 pregnant females was 8 (range of 3–13). The growth parameters and late ages of sexual maturation for silky sharks in the central west Pacific suggest a significant risk from fisheries exploitation without careful population management.


2016 ◽  
Vol 67 (3) ◽  
pp. 357 ◽  
Author(s):  
Romana Gračan ◽  
Scott A. Heppell ◽  
Gordana Lacković ◽  
Bojan Lazar

This research provides the first information on age and growth estimates for the endangered Mediterranean subpopulation of spiny dogfish, a commercially exploited shark, highly sensitive to overexploitation. We collected samples from 206 specimens caught by commercial bottom trawls in the Adriatic Sea, and utilising three ageing protocols achieved good agreement between the readings (average percentage error=1.65%). Four growth models were fitted to length-at-age and weight-at-age data, for each sex separately. The Gompertz growth model produced the statistically best fit resulting in the following parameters: k values for males and females were 0.09 and 0.04 year–1, size-at-birth ranged from 22.9 to 24.1-cm total length, with a theoretical asymptotic length of 103.3cm for males and 173.3cm for females. The age at 50% maturity was 10.5 years for males and 20.1 years for females. The maximum age was estimated at 23 years for males and 36 years for females, with natural mortality estimates of 0.12 for males and 0.07 for females. As a result of reported demographic parameter estimates, high fishing effort and particularly low resilience of the species to exploitation, it is important to produce proper species-specific management strategy for the spiny dogfish in the region.


2015 ◽  
Author(s):  
Kwang-Ming Liu ◽  
Chiao-Bin Wu ◽  
Shoou-Jeng Joung ◽  
Wen-Pei Tsai

Age and growth information is essential for accurate stock assessment of fish, and growth model selection may influence the result of stock assessment. Previous descriptions of the age and growth of elasmobranches relied mainly on the von Bertalanffy growth model (VBGM). However, it has been noted that sharks, skates and rays exhibit significant variety in size, shape, and life-history traits. Given this variation, the VBGM may not necessarily provide the best fit for all elasmobranches. This study attempts to improve the accuracy of age estimates by testing four growth models—the VBGM, two-parameter VBGM, Robertson (Logistic) and Gompertz models—to fit observed and simulated length-at-age data for 37 species of elasmobranches. The best growth model was selected based on corrected Akaike’s Information Criterion (AICc), the AICc difference, and the AICc weight. The VBGM and two-parameter VBGM provide the best fit for species with slow growth and extended longevity (L∞ > 100 cm TL, 0.05 < k < 0.15 yr-1), such as pelagic sharks. For fast-growing small sharks (L∞ < 100 cm TL, kr or kg > 0.2 yr-1) in deep waters and for small-sized demersal skates/rays, the Robertson and the Gompertz models provide the best fit. The best growth models for small sharks in shallow waters are the two-parameter VBGM and the Robertson model, while all the species best fit by the Gompertz model are skates and rays.


2022 ◽  
Vol 8 ◽  
Author(s):  
Shui-Kai Chang ◽  
Tzu-Lun Yuan ◽  
Simon D. Hoyle ◽  
Jessica H. Farley ◽  
Jen-Chieh Shiao

Growth shapes the life history of fishes. Establishing appropriate aging procedures and selecting representative growth models are important steps in developing stock assessments. Flyingfishes (Exocoetidae) have ecological, economic, and cultural importance to many coastal countries including Taiwan. There are 29 species of flyingfishes found in the Kuroshio Current off Taiwan and adjacent waters, comprising 56% of the flyingfishes taxa recorded worldwide. Among the six dominant species in Taiwan, four are of special importance. This study reviews aging data of these four species, documents major points of the aging methods to address three aging issues identified in the literature, and applies multi-model inference to estimate sex-combined and sex-specific growth parameters for each species. The candidate growth models examined included von Bertalanffy, Gompertz, Logistic, and Richards models, and the resulting optimal model tended to be the von Bertalanffy model for sex-combined data and Gompertz and von Bertalanffy models for sex-specific cases. The study also estimates hatch dates from size data collected from 2008 to 2017; the results suggest that the four flyingfishes have two spawning seasons per year. Length-weight relationships are also estimated for each species. Finally, the study combines the optimal growth estimates from this study with estimates for all flyingfishes published globally, and statistically classifies the estimates into clusters by hierarchical clustering analysis of logged growth parameters. The results demonstrate that aging materials substantially affect growth parameter estimates. This is the first study to estimate growth parameters of flyingfishes with multiple model consideration. This study provides advice for aging flyingfishes based on the three aging issues and the classification analysis, including a recommendation of using the asterisci for aging flyingfishes to avoid complex otolith processing procedures, which could help researchers from coastal countries to obtain accurate growth parameters for many flyingfishes.


2019 ◽  
Vol 32 ◽  
pp. 7
Author(s):  
Carlos Goicochea-Vigo ◽  
Enrique Morales-Bojórquez ◽  
Viridiana Y. Zepeda-Benitez ◽  
José Ángel Hidalgo-de-la-Toba ◽  
Hugo Aguirre-Villaseñor ◽  
...  

Mantle length (ML) and age data were analyzed to describe the growth patterns of the flying jumbo squid, Dosidicus gigas, in Peruvian waters. Six non-asymptotic growth models and four asymptotic growth models were fitted. Length-at-age data for males and females were analysed separately to assess the growth pattern. Multi-model inference and Akaike's information criterion were used to identify the best fitting model. For females, the best candidate growth model was the Schnute model with L∞ = 106.96 cm ML (CI 101.23–110.27 cm ML, P < 0.05), age at growth inflection 244.71 days (CI 232.82–284.86 days, P < 0.05), and length at growth inflection 57.26 cm ML (CI 55.42–58.51 cm ML, P < 0.05). The growth pattern in males was best described by a Gompertz growth model with L∞ = 127.58 cm ML (CI 115.27–131.80 cm ML, P < 0.05), t0 = 21.8 (CI 20.06–22.41, P < 0.05), and k = 0.007 (CI 0.006–0.007, P < 0.05). These results contrast with the growth model previously reported for D. gigas in the region, where the growth pattern was identified as non-asymptotic.


<em>Abstract</em>.—The largest native population of Shoal Bass <em>Micropterus cataractae</em> inhabits the Flint River, Georgia and remains relatively unstudied. We examined demographic characteristics of the population in the lower Flint River that is bounded by reservoirs during 2009–2011. We anchor tagged 741 Shoal Bass to evaluate the percentage of caught fish that were harvested. Shoal bass (<em>n</em> = 187) were sacrificed for age and growth analysis. Ages of sampled fish ranged from age 1 to 11. Von Bertalanffy growth parameter estimates were <EM>L</EM><sub>∞</sub> = 564 mm, <EM>K</EM> = 0.312, and<em> t</em><sub>0</sub> = –0.089. Male and female growth rates were similar, with the mean Shoal Bass requiring 2.4 years to reach 305 mm and 5.1 years to reach 457 mm. Growth rates of Shoal Bass were greater than those of previously studied populations and Largemouth Bass <em>M. salmoides</em> in the Flint River and an impoundment bounding the upper end of the study site. Annual total pooled mortality was 49%. Forty-one percent of caught Shoal Bass were harvested by anglers (range 31–60%). Our results suggest that with current population characteristics, an increase in the minimum length limit would not increase yield to the recreational fishery.


2013 ◽  
Vol 70 (6) ◽  
pp. 1128-1139 ◽  
Author(s):  
Mitchell T. Zischke ◽  
Shane P. Griffiths ◽  
Ian R. Tibbetts

Abstract Zischke, M. T., Griffiths, S. P., and Tibbetts, I. R. 2013. Rapid growth of wahoo (Acanthocybium solandri) in the Coral Sea, based on length-at-age estimates using annual and daily increments on sagittal otoliths. – ICES Journal of Marine Science, 70: 1128–1139. The wahoo (Acanthocybium solandri) is an economically important species incidentally caught in oceanic fisheries targeting tuna and coastal fisheries targeting mackerels. The age and growth of wahoo was examined using whole and sectioned otoliths from 395 fish (790–1770 mm LF) sampled from the Coral Sea. Growth increments were more reliably assigned on whole otoliths than sectioned otoliths. Edge analyses revealed that growth increments were deposited annually, primarily between October and February. Furthermore, analysis of presumed daily microincrements showed that ∼90% of fish had deposited the first “annual” growth increment by the 365th day, thereby indirectly validating annual increment formation. Wahoo were aged at between 108 d and 7 years, with 76% of fish being <2-year old. The specialized von Bertalanffy growth function provided the best fit to length-at-age data, with parameter estimates (sexes combined) of L∞ = 1499 mm LF, K = 1.58 year−1, and t0 = −0.17 years. The growth performance index for wahoo in the Coral Sea (φ′ = 4.55) was one of the highest of all pelagic fish, with their growth and maximum size most similar to dolphinfish. This study suggests that wahoo are one of the fastest growing teleosts and provides growth parameter estimates that may facilitate future stock assessments and guide fisheries management.


Sign in / Sign up

Export Citation Format

Share Document