Population structure in a wide-ranging coastal teleost (Argyrosomus japonicus, Sciaenidae) reflects marine biogeography across southern Australia

2016 ◽  
Vol 67 (8) ◽  
pp. 1103 ◽  
Author(s):  
Thomas C. Barnes ◽  
Claudia Junge ◽  
Steven A. Myers ◽  
Mathew D. Taylor ◽  
Paul J. Rogers ◽  
...  

Population structure in marine teleosts is often investigated to aid conservation and fisheries management (e.g. to assess population structure to inform restocking programs). We assessed genetic population structure of the important estuary-associated marine fish, mulloway (Argyrosomus japonicus), within Australian waters and between Australia and South Africa. Genetic variation was investigated at 13 polymorphic microsatellite markers. FST values and Bayesian estimates in STRUCTURE suggested population differentiation of mulloway within Australia and confirm strong differentiation between South Africa and Australia. The 12 Australian sample sets fell into one of four spatially separated genetic clusters. Initially, a significant signal of isolation-by-distance (IBD) was evident among Australian populations. However, further investigation by decomposed-pairwise-regression (DPR) suggested five sample sets were influenced more by genetic-drift, rather than gene-flow and drift equilibrium, as expected in strong IBD cases. Cryptic oceanographic and topographical influences may isolate mulloway populations from south-western Australia. The results demonstrate that DPR is suitable to assess population structure of coastal marine species where barriers to gene flow may be less obvious than in freshwater systems. Information on the relative strengths of gene flow and genetic drift facilitates a more comprehensive understanding of the evolutionary forces that lead to population structure, which in turn informs fisheries and assists conservation management. Large-bodied predatory scale-fish may be under increasing pressure on a global scale, owing to a variety of anthropogenic reasons. In southern Australia, the iconic sciaenid A. japonicus (mulloway, jewfish or kob) is no exception. Despite the species supporting important fisheries, much of its ecology is poorly understood. It is possible that a greater understanding of their genetic population structure can help ensure a sustainable future for the only southern Australian sciaenid.

2003 ◽  
Vol 54 (2) ◽  
pp. 127 ◽  
Author(s):  
Jennifer R. Ovenden ◽  
Raewyn Street

Translocations of mangrove jack, Lutjanus argentimaculatus (Forsskål 1775), to increase angling opportunities in artificial impoundments are foreshadowed in Queensland. To evaluate genetic population structure before translocations occur, mangrove jack were collected from three sites on the Queensland coast and from one site on the north-western coast of Western Australia. Allelic variation at four dinucleotide microsatellite loci was high: gene diversity (heterozygosity) ranged from 0.602 to 0.930 and allelic counts from 10 to 24. Genetic differentiation among collection sites was weak: estimates of FST were 0.002 for all four sites, and less (FST = 0.001) across a major biogeographical boundary (the Torres Strait region). Nucleotide sequence from two mitochondrial regions (control, 375 base pairs, and ATPase, 415 base pairs) was obtained from a subset of the Australian and additional Indo-Pacific (Indonesian and Samoan) mangrove jack. Haplotype diversity was high (control region, 33 haplotypes for 34 fish; ATPase region, 13 haplotypes for 56 fish). Phylogenetic analysis of mitochondrial DNA sequence data could not discern a relationship between tree topology and geography. These results suggest that mangrove jack in Queensland, and possibly throughout Australia, experience high levels of gene flow. The artificial gene flow caused by permitted translocations is unlikely to exceed natural levels. Fine-scale ecological matching between donor and recipient populations may increase stocking success, and is important if translocation is needed as a species recovery tool in the future.


1998 ◽  
Vol 76 (11) ◽  
pp. 2049-2057 ◽  
Author(s):  
Andrew J Bohonak

Dispersal rates for freshwater invertebrates are often inferred from population genetic data. Although genetic approaches can indicate the amount of isolation in natural populations, departures from an equilibrium between drift and gene flow often lead to biased gene flow estimates. I investigated the genetic population structure of the pond-dwelling fairy shrimp Branchinecta coloradensis in the Rocky Mountains of Colorado, U.S.A., using allozymes. Glaciation in this area and the availability of direct dispersal estimates from previous work permit inferences regarding the relative impacts of history and contemporary gene flow on population structure. Hierarchical F statistics were used to quantify differentiation within and between valleys (thetaSV and thetaVT, respectively). Between valleys separated by 5-10 km, a high degree of differentiation (thetaVT = 0.77) corresponds to biologically reasonable gene flow estimates of 0.07 individuals per generation, although it is possible that this value represents founder effects and nonequilibrium conditions. On a local scale (<=110 m), populations are genetically similar (thetaSV = 0.13) and gene flow is estimated to be 1.7 individuals exchanged between ponds each generation. This is very close to an ecological estimate of dispersal for B. coloradensis via salamanders. Gene flow estimates from previous studies on other Anostraca are also similar on comparable geographic scales. Thus, population structure in B. coloradensis appears to be at or near equilibrium on a local scale, and possibly on a regional scale as well.


Author(s):  
Diana Sr Alcazar ◽  
Marc Kochzius

Coral reef associated marine invertebrates, such as the blue sea starLinckia laevigata, have a life history with two phases: sedentary adults and planktonic larvae. On the one hand it is hypothesised that the long pelagic larval duration facilitates large distance dispersal. On the other hand, complex oceanographic and geographic characteristics of the Visayan seascape could cause isolation of populations. The study aims to investigate the genetic diversity, genetic population structure and gene flow inL. laevigatato reveal connectivity among populations in the Visayas. The analysis is based on partial sequences (626 bp in length) of the mitochondrial cytochrome oxidase I gene (COI) from 124 individuals collected from five localities in the Visayas. A comparative analysis of these populations with populations from the Indo-Malay Archipelago (IMA) published previously is also presented. Genetic diversity was high (h = 0.98, π = 1.6%) and comparable with preceding studies. Analyses of molecular variance (AMOVA) revealed a lack of spatial population differentiation among sample sites in the Visayas (ΦST-value = 0.009;P &gt; 0.05). The lack of genetic population structure indicates high gene flow among populations ofL. laevigatain the Visayas. Comparative analysis with data from the previous study indicates high connectivity of the Visayas with the central part of the IMA.


PLoS ONE ◽  
2021 ◽  
Vol 16 (5) ◽  
pp. e0251976
Author(s):  
Atal Saha ◽  
Matthew Kent ◽  
Lorenz Hauser ◽  
Daniel P. Drinan ◽  
Einar E. Nielsen ◽  
...  

The diverse biology and ecology of marine organisms may lead to complex patterns of intraspecific diversity for both neutral and adaptive genetic variation. Sebastes mentella displays a particular life-history as livebearers, for which existence of multiple ecotypes has been suspected to complicate the genetic population structure of the species. Double digest restriction-site associated DNA was used to investigate genetic population structure in S. mentella and to scan for evidence of selection. In total, 42,288 SNPs were detected in 277 fish, and 1,943 neutral and 97 tentatively adaptive loci were selected following stringent filtration. Unprecedented levels of genetic differentiation were found among the previously defined ‘shallow pelagic’, ‘deep pelagic’ and ‘demersal slope’ ecotypes, with overall mean FST = 0.05 and 0.24 in neutral and outlier SNPs, respectively. Bayesian computation estimated a concurrent and historical divergence among these three ecotypes and evidence of local adaptation was found in the S. mentella genome. Overall, these findings imply that the depth-defined habitat divergence of S. mentella has led to reproductive isolation and possibly adaptive radiation among these ecotypes. Additional sub-structuring was detected within the ‘shallow’ and ‘deep’ pelagic ecotypes. Population assignment of individual fish showed more than 94% agreement between results based on SNP and previously generated microsatellite data, but the SNP data provided a lower estimate of hybridization among the ecotypes than that by microsatellite data. We identified a SNP panel with only 21 loci to discriminate populations in mixed samples based on a machine-learning algorithm. This first SNP based investigation clarifies the population structure of S. mentella, and provides novel and high-resolution genomic tools for future investigations. The insights and tools provided here can readily be incorporated into the management of S. mentella and serve as a template for other exploited marine species exhibiting similar complex life history traits.


2021 ◽  
Author(s):  
◽  
Danielle Amelia Hannan

<p>Understanding the different types of genetic population structure that characterise marine species, and the processes driving such patterns, is crucial for establishing links between the ecology and evolution of a species. This knowledge is vital for management and conservation of marine species. Genetic approaches are a powerful tool for revealing ecologically relevant insights to marine population dynamics. Geographic patterns of genetic population structure are largely determined by the rate at which individuals are exchanged among populations (termed ‘population connectivity’), which in turn is influenced by conditions in the physical environment. The complexity of the New Zealand marine environment makes it difficult to predict how physical oceanographic and environmental processes will influence connectivity in coastal marine organisms and hence the type of genetic structure that will form. This complexity presents a challenge for management of marine resources but also makes the New Zealand region an interesting model system to investigate how and why population structure develops and evolves over time. Paphies subtriangulata (tuatua) and P. australis (pipi) are endemic bivalve ‘surf clams’ commonly found on New Zealand surf beaches and harbour/estuary environments, respectively. They form important recreational, customary and commercial fisheries, yet little is known about the stock structure of these species. This study aimed to use genetic techniques to determine population structure, levels of connectivity and ‘seascape’ genetic patterns in P. subtriangulata and P. australis, and to gain further knowledge of common population genetic processes operating in the New Zealand coastal marine environment. Eleven and 14 novel microsatellite markers were developed for P. subtriangulata and P. australis, respectively. Samples were collected from 10 locations for P. subtriangulata and 13 locations for P. australis (35-57 samples per location; total sample size of 517 for P. subtriangulata and 674 for P. australis). Geographic patterns of genetic variation were measured and rates of migration among locations were estimated on recent and historic time scales. Both species were characterised by genetic population structure that was consistent with their habitat. For P. subtriangulata, the Chatham Island population was strongly differentiated from the rest of the sampled locations. The majority of mainland locations were undifferentiated and estimated rates of migration among locations were high on both time scales investigated, although differentiation among some populations was observed. For P. australis, an overall isolation by distance (IBD) pattern was likely to be driven by distance between discrete estuary habitats. However, it was difficult to distinguish IBD from hierarchical structure as populations could be further subdivided into three significantly differentiated groups (Northern, South Eastern and South Western), providing evidence for barriers to dispersal. Further small scale patterns of genetic differentiation were observed in some locations, suggesting that complex current patterns and high self-recruitment drive small scale genetic population structure in both P. subtriangulata and P. australis. These patterns of genetic variation were used in seascape genetic analyses to test for associations with environmental variables, with the purpose of understanding the processes that might shape genetic population structure in these two species. Although genetic population structure varied between the two species, common physical and environmental variables (geographic distance, sea surface temperature, bed slope, tidal currents) are likely to be involved in the structuring of populations. Results suggest that local adaptation, in combination with restricted dispersal, could play a role in driving the small scale patterns of genetic differentiation seen among some localities. Overall, the outcomes of this research fill a gap in our knowledge about the rates and routes by which populations are connected and the environmental factors influencing such patterns in the New Zealand marine environment. Other studies have highlighted the importance of using multi-faceted approaches to understand complex processes operating in the marine environment. The present study is an important first step in this direction as these methods are yet to be widely applied to New Zealand marine species. Importantly, this study used a comparative approach, applying standardised methodology to compare genetic population structure and migration across species. Such an approach is necessary if we wish to build a robust understanding of the spatial and temporal complexities of population dynamics in the New Zealand coastal marine environment, and to develop effective management strategies for our unique marine species.</p>


2013 ◽  
Vol 27 ◽  
pp. 116-122 ◽  
Author(s):  
Tim Kinitz ◽  
Markus Quack ◽  
Martin Paulus ◽  
Michael Veith ◽  
Sara Bergek ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document