scholarly journals The Crab Nebula and the Origin of Interstellar Magnetic Fields

1957 ◽  
Vol 10 (4) ◽  
pp. 530 ◽  
Author(s):  
JH Piddington

Electromagnetic effects in the Crab nebula have been investigated with the following conclusions: (1) No appreciable proportion of the present central magnetic field could have passed in or out through the surrounding ionized supernova shell during its 900 years life.

2021 ◽  
pp. 29-33
Author(s):  

Variants of weld pools obtained by verification with the influence of magnetic fields are considered. Methods for increasing the effectiveness of electromagnetic effects during welding are proposed. Keywords: welding, electromagnetic field, weld pool, induction, coating. [email protected], [email protected]


2016 ◽  
Vol 82 (4) ◽  
Author(s):  
Martin Lemoine

Successful phenomenological models of pulsar wind nebulae assume efficient dissipation of the Poynting flux of the magnetized electron–positron wind as well as efficient acceleration of the pairs in the vicinity of the termination shock, but how this is realized is not yet well understood. This paper suggests that the corrugation of the termination shock, at the onset of nonlinearity, may lead towards the desired phenomenology. Nonlinear corrugation of the termination shock would convert a fraction of order unity of the incoming ordered magnetic field into downstream turbulence, slowing down the flow to sub-relativistic velocities. The dissipation of turbulence would further preheat the pair population on short length scales, close to equipartition with the magnetic field, thereby reducing the initial high magnetization to values of order unity. Furthermore, it is speculated that the turbulence generated by the corrugation pattern may sustain a relativistic Fermi process, accelerating particles close to the radiation reaction limit, as observed in the Crab nebula. The required corrugation could be induced by the fast magnetosonic modes of downstream nebular turbulence; but it could also be produced by upstream turbulence, either carried by the wind or seeded in the precursor by the accelerated particles themselves.


1994 ◽  
Vol 142 ◽  
pp. 797-806
Author(s):  
Jonathan Arons ◽  
Marco Tavani

AbstractWe discuss recent research on the structure and particle acceleration properties of relativistic shock waves in which the magnetic field is transverse to the flow direction in the upstream medium, and whose composition is either pure electrons and positrons or primarily electrons and positrons with an admixture of heavy ions. Particle-in-cell simulation techniques as well as analytic theory have been used to show that such shocks in pure pair plasmas are fully thermalized—the downstream particle spectra are relativistic Maxwellians at the temperature expected from the jump conditions. On the other hand, shocks containing heavy ions which are a minority constituent by number but which carry most of the energy density in the upstream medium do put ~20% of the flow energy into a nonthermal population of pairs downstream, whose distribution in energy space is N(E) ∝ E−2, where N(E)dE is the number of particles with energy between E and E + dE.The mechanism of thermalization and particle acceleration is found to be synchrotron maser activity in the shock front, stimulated by the quasi-coherent gyration of the whole particle population as the plasma flowing into the shock reflects from the magnetic field in the shock front. The synchrotron maser modes radiated by the heavy ions are absorbed by the pairs at their (relativistic) cyclotron frequencies, allowing the maximum energy achievable by the pairs to be γ±m±c2 = mic2γ1/Zi, where γ1 is the Lorentz factor of the upstream flow and Zi, is the atomic number of the ions. The shock’s spatial structure is shown to contain a series of “overshoots” in the magnetic field, regions where the gyrating heavy ions compress the magnetic field to levels in excess of the eventual downstream value.This shock model is applied to an interpretation of the structure of the inner regions of the Crab Nebula, in particular to the “wisps,” surface brightness enhancements near the pulsar. We argue that these surface brightness enhancements are the regions of magnetic overshoot, which appear brighter because the small Larmor radius pairs are compressed and radiate more efficiently in the regions of more intense magnetic field. This interpretation suggests that the structure of the shock terminating the pulsar’s wind in the Crab Nebula is spatially resolved, and allows one to measure γ1, and a number of other properties of the pulsar’s wind. We also discuss applications of the shock theory to the termination shocks of the winds from rotation-powered pulsars embedded in compact binaries. We show that this model adequately accounts for (and indeed predicted) the recently discovered X-ray flux from PSR 1957+20, and we discuss several other applications to other examples of these systems.Subject headings: acceleration of particles — ISM: individual (Crab Nebula) — relativity — shock waves


1990 ◽  
Vol 140 ◽  
pp. 79-80
Author(s):  
M. F. Bietenholz ◽  
P. P. Kronberg

We present and describe recent radio observations of the Crab Nebula, which allow us to determine the magnetic field orientation and depolarization at unprecedented resolution. The observations were made in 1987-1988 using all four configurations of the VLA, at 1410,1515,4625, and 4885 MHz. The resulting maps were all convolved with a clean beam of 1.8″ × 2.0″, elongated in P.A. 80°, and the residuals added back in.


1971 ◽  
Vol 46 ◽  
pp. 65-67
Author(s):  
G. G. Fazio ◽  
H. F. Helmken ◽  
G. H. Rieke ◽  
T. C. Weekes

The detection of Čerenkov light emitted by cosmic-ray air showers was used to search for cosmic gamma rays from the Crab Nebula. By use of the 10-m optical reflector at Mt. Hopkins, Arizona, the Crab Nebula was observed during the winter of 1969–1970 for approximately 112 hours, which was a significant increase in exposure time over previous experiments. Above a gamma-ray energy of 2.2 × 1011 eV, no significant flux was detected, resulting in an upper limit to the flux of 8.1 × 10-11 photon/cm2 sec. In the synchrotron-Compton-scattering model of gamma-ray production in the Crab Nebula, this limit on the flux indicates the average magnetic field in the nebula must be greater than 3 × 10-4 G.


2000 ◽  
Vol 177 ◽  
pp. 507-508 ◽  
Author(s):  
Anatoly Spitkovsky ◽  
Jonathan Arons

AbstractWe present results of time-dependent numerical modeling of the internal structure of the collisionless shock terminating the pulsar wind in Crab Nebula. We treat the equatorial relativistic wind as composed of ions and electron-positron plasma with an embedded toroidal magnetic field. Relativistic cyclotron instability of the ion ring downstream from the shock is found to launch outward propagating magnetosonic waves. Due to the fresh supply of ions crossing the shock, the time-dependent process achieves a limit-cycle pattern, in which the waves are launched with periodicity on the order of the ion Larmor time. Compressions in magnetic field and pair density associated with these waves as well as their propagation speed qualitatively reproduce the features observed in the wisps.


1971 ◽  
Vol 46 ◽  
pp. 389-391
Author(s):  
L. Woltjer

The magnetic field and the relativistic electrons in the Crab Nebula cannot have originated at the time of the supernova explosion. The energy density in the magnetic field is so large that it must have been generated using the energy supply in the pulsar. The energies of the electrons are so high, and their lifetimes correspondingly are so short, that they must have been accelerated, again using the pulsar energy. The efficiency of these processes must be high, but there is an adequate energy supply.


Sign in / Sign up

Export Citation Format

Share Document