Photosynthetic and anatomical characteristics in the C4–crassulacean acid metabolism-cycling plant Portulaca grandiflora

2002 ◽  
Vol 29 (6) ◽  
pp. 763 ◽  
Author(s):  
Lonnie J. Guralnick ◽  
Gerald Edwards ◽  
Maurice S. B. Ku ◽  
Brandon Hockema ◽  
Vince Franceschi

This paper originates from a presentation at the IIIrd International Congress on Crassulacean Acid Metabolism, Cape Tribulation, Queensland, Australia, August 2001. Portulaca grandiflora (Lind.) is a succulent species with C4 photosynthesis and crassulacean acid metabolism (CAM) cycling in leaves, and CAM-idling type photosynthesis in stems. We investigated the level and localization of carbon fixation enzymes and photosynthetic activity of leaves and stems of P. grandiflora under well-watered and drought conditions. As CAM activity increased during water stress, the leaf water-storage tissue collapsed, presumably transferring water to the bundle sheath and mesophyll cells, and so maintaining the C4 photosynthetic pathway. Tissue prints indicated an increase in phosphoenolpyruvate carboxylase (PEPC) in the water-storage tissue of leaves and the cortex of stems. Immunoblot analyses after 10 d of water stress showed that leaves had a slight decrease in the proteins of the C4-CAM pathway, while at the same time a new isoform of NADP-malic enzyme (NADP-ME) appeared. In contrast, the stem showed increases in proteins of the CAM pathway when water stressed. Under water stress, diurnal fluctuation in acidity in leaves was not accompanied by a net gain or loss of CO2 at night, and there was sustained, but decreased, fixation of CO2 during the day, characteristic of CAM cycling. High gross rates of O2 evolution were maintained during the day under water stress, suggesting induction of alternative electron sinks. With induced diurnal fluctuations in acidity in stems, there was no net carbon gain during the day or night. These results demonstrate, for the first time, that the stem of P. grandiflora is an inducible CAM-idling tissue. Our results also indicate that the C4 and CAM pathways operate independently of one another in P. grandiflora.

Plants ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 55 ◽  
Author(s):  
Lonnie J. Guralnick ◽  
Kate E. Gilbert ◽  
Diana Denio ◽  
Nicholas Antico

Portulaca grandiflora simultaneously utilizes both the C4 and Crassulacean acid metabolism (CAM) photosynthetic pathways. Our goal was to determine whether CAM developed and was functional simultaneously with the C4 pathway in cotyledons of P. grandiflora. We studied during development whether CAM would be induced with water stress by monitoring the enzyme activity, leaf structure, JO2 (rate of O2 evolution calculated by fluorescence analysis), and the changes in titratable acidity of 10 and 25 days old cotyledons. In the 10 days old cotyledons, C4 and CAM anatomy were evident within the leaf tissue. The cotyledons showed high titratable acid levels but a small CAM induction. In the 25 days old cotyledons, there was a significant acid fluctuation under 7 days of water stress. The overall enzyme activity was reduced in the 10 days old plants, while in the 25 days old plants CAM activity increased under water-stressed conditions. In addition to CAM, the research showed the presence of glycine decarboxylase in the CAM tissue. Thus, it appears both pathways develop simultaneously in the cotyledons but the CAM pathway, due to anatomical constraints, may be slower to develop than the C4 pathway. Cotyledons showed the ancestral Atriplicoid leaf anatomy, which leads to the question: Could a CAM cell be the precursor to the C4 pathway? Further study of this may lead to understanding into the evolution of C4 photosynthesis in the Portulaca.


1982 ◽  
Vol 143 (3) ◽  
pp. 294-297 ◽  
Author(s):  
C. F. Fu ◽  
C. S. Hew

1984 ◽  
Vol 218 (2) ◽  
pp. 387-393 ◽  
Author(s):  
P P Daniel ◽  
J A Bryant ◽  
F I Woodward

Umbilicus rupestris (pennywort) switches from C3 photosynthesis to an incomplete form of crassulacean acid metabolism (referred to as ‘CAM-idling’) when exposed to water stress (drought). This switch is accompanied by an increase in the activity of phosphoenolpyruvate carboxylase. This enzyme also shows several changes in properties, including a marked decrease in sensitivity to acid pH, a lower Km for phosphoenolpyruvate, very much decreased sensitivity to the allosteric inhibitor malate, and increased responsiveness to the allosteric effector glucose 6-phosphate. The Mr of the enzyme remains unchanged, at approx. 185 000. These changes in properties of phosphoenolpyruvate carboxylase are discussed in relation to the roles of the enzyme in C3 and in CAM plants.


1979 ◽  
Vol 6 (6) ◽  
pp. 589 ◽  
Author(s):  
K Winter

Induction of crassulacean acid metabolism (CAM) in Mesembryanthemum crystallinum in response to high salinity was studied in plants grown in different CO2 regimes to determine whether the induction of CAM could be controlled by CO2 supply in the light and dark; a possible consequence of stomatal closure in response to water stress. The activity of extractable phosphoenolpyruvate carboxylase (EC 4.1.1.31) and the nocturnal change in malate content were followed at frequent intervals after onset of the treatments. The results suggest that the initial event during the induction of CAM is a change in the biochemical apparatus, indicated by the activity of phosphoenolpyruvate carboxylase, which then leads to the day/night fluctuations of malate synthesis typical of CAM. This initial step is not controlled by the availability of CO2 in the light or dark.


2016 ◽  
Vol 86 (2) ◽  
pp. 175-185 ◽  
Author(s):  
Liangsheng Zhang ◽  
Fei Chen ◽  
Guo-Qiang Zhang ◽  
Yong-Qiang Zhang ◽  
Shance Niu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document