In situ Immunofluorescent Labelling of Ribulose-1,5-Bisphosphate Carboxylase in Leaves of C3 and C4 Plants

1977 ◽  
Vol 4 (4) ◽  
pp. 523 ◽  
Author(s):  
PW Hattersley ◽  
L Watson ◽  
CB Osmond

Antibodies raised to wheat and spinach ribulose-1,5-bisphosphate carboxylase (RuP2Case) have been used to locate the enzyme in hand-cut leaf blade transections of 40 C3 and C4 species, and one crassulacean acid metabolism (CAM) plant by immunofluorescence (using the indirect technique). The sample includes species from seven plant families, both monocotyledons and dicotyledons. In C3 and CAM species, specific fluorescence is associated with chloroplasts of all leaf chlorenchymatous cells when labelled with anti-RuP2 Case, while in species with 'classical' C4 leaf anatomy RuP2 Case is located almost exclusively in 'bundle sheath' ['Kranz' or 'photosynthetic carbon reduction' (PCR)] cell chloroplasts. Ten C4 species exhibit various types of 'non-classical' C4 leaf anatomy (Alloteropsis, Aristida, Arundinella, Cyperus, Fimbristylis, Triodia and Salsola types) and, for all but one of these types, immunofluorescent labelling of RuP2 Case provides the first direct experimental evidence of a cellular compartmentation of photosynthetic carbon metabolism and of the location of PCR compartments. Leaves of two Atriplex C3/C4 hybrid individuals and of Panicum milioides, a putative C3/C4 intermediate, exhibited a C3 antibody labelling response.

1969 ◽  
Vol 47 (6) ◽  
pp. 915-919 ◽  
Author(s):  
W. J. S. Downton ◽  
T. Bisalputra ◽  
E. B. Tregunna

Some aspects of chloroplast development for parenchymatic bundle sheath cells and mesophyll cells of Atriplex rosea leaves are described. The mesophyll chloroplasts begin to degenerate when the bundle sheath chloroplasts have reached a stage of maximum development. These events are related to the changing roles of the two types of chloroplasts in carbon dioxide assimilation. Leaves of Atriplex rosea are similar to those of tropical grasses in leaf anatomy, photosynthetic carbon metabolism, and CO2 compensation value. Atriplex hastata differs from A. rosea in leaf anatomy and is photosynthetically similar to the temperate grasses. There is a lack of parenchymatic sheath development and the chloroplasts which surround the vascular bundle are ultrastructurally identical with those in the rest of the mesophyll.


1984 ◽  
Vol 11 (6) ◽  
pp. 509 ◽  
Author(s):  
H Usuda ◽  
MSB Ku ◽  
GE Edwards

Among 10 C4 species having a wide range in photosynthetic activity, the rates of photosynthesis/leaf area under high light were examined and compared with the chlorophyll and soluble protein content and the activities of several photosynthetic enzymes. The species examined were Digitaria sanguinalis, Echinochloa crus-galli, Microstegium vimineum, Panicum capillare, Panicum miliaceum, Paspalum dilatatum, Paspalum notatum, Pennisetum purpureum, Setaria lutescens, and Zea mays. The photosynthetic rates per unit leaf area ranged from 10 to 38 �mol CO2 fixed m-2 s-1. Among the 10 species there was a high degree of correlation of rate of photosynthesis/leaf area with soluble protein (r = 0.88), ribulose 1,5-bisphosphate carboxylase (r = 0.88) and pyruvate,PI dikinase (r = 0.94), but a lower correlation of photosynthetic rate/leaf area with phosphoenolpyruvate carboxylase (r = 0.74) and no significant correlation of photosynthetic rate/leaf area with chlorophyll content (r = 0.56). Among eight species of the NADP-malic enzyme C4 subgroup, there was a good correlation of photosynthetic ratelleaf area with NADP-malate dehydrogenase (r = 0.88) and NADP- malic enzyme (r = 0.92). Extractable activities of both the ribulose 1,5-bisphosphate carboxylase and the dikinase were generally close to the rate of photosynthesis. When comparing the activity per unit leaf area of one enzyme with another, generally a high degree of correlation was found among the species. The results suggest that a given C4 species tends to maintain a balance in the activities of several photosynthetic enzymes and that there is potential to estimate capacity for C4 photosynthesis under high light through determining activity of certain photosynthetic enzymes.


Author(s):  
Masahiro Tamoi ◽  
Yoshie Hiramatsu ◽  
Shigeki Nedachi ◽  
Tomoki Tabuchi ◽  
Kumi Otori ◽  
...  

Author(s):  
Benedict M. Long ◽  
Britta Förster ◽  
Sacha B. Pulsford ◽  
G. Dean Price ◽  
Murray R. Badger

ABSTRACTMembraneless organelles containing the enzyme Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) are a common feature of organisms utilizing CO2 concentrating mechanisms (CCMs) to enhance photosynthetic carbon acquisition. In cyanobacteria and proteobacteria, the Rubisco condensate is encapsulated in a proteinaceous shell, collectively termed a carboxysome, while some algae and hornworts have evolved Rubisco condensates known as pyrenoids. In both cases, CO2 fixation is enhanced compared with the free enzyme. Previous mathematical models have attributed the improved function of carboxysomes to the generation of elevated CO2 within the organelle via a co-localized carbonic anhydrase (CA), and inwardly diffusing HCO3- which has accumulated in the cytoplasm via dedicated transporters. Here we present a novel concept in which we consider the net of two protons produced in every Rubisco carboxylase reaction. We evaluate this in a reaction-diffusion, compartment model to investigate functional advantages these protons may provide Rubisco condensates and carboxysomes, prior to the evolution of HCO3- accumulation. Our model highlights that diffusional resistance to reaction species within a condensate allows Rubisco-derived protons to drive the conversion of HCO3- to CO2 via co-localized CA, enhancing both condensate [CO2] and Rubisco rate. Protonation of Rubisco substrate (RuBP) and product (PGA) plays an important role in modulating internal pH and CO2 generation. Application of the model to putative evolutionary ancestors, prior to contemporary cellular HCO3- accumulation, revealed photosynthetic enhancements along a logical sequence of advancements, via Rubisco condensation, to fully-formed carboxysomes. Our model suggests that evolution of Rubisco condensation could be favored under low CO2 and low light environments.


2014 ◽  
Vol 51 (2) ◽  
pp. 229-240 ◽  
Author(s):  
Maria Faltynowicz ◽  
Waldemar Lechowicz ◽  
Jerzy Poskuta

The influence of abscisic acid (ABA) on carbon metabolism and the activity of ribulosebisphosphate (RuBP) and phosphoenolpyruvate (PEP) carboxylases in 8-day-old pea seedlings was investigated. It was endeavoured to correlate the changes observed in metabolic processes with the endogenous ABA level. In plants treated with ABA incorporation of labeled carbon into sucrose, glucose, fructose and sugar phosphates was depressed, while <sup>14</sup>C incorporation into starch, ribulose and malic acid was enhanced. The activity of RuBP carboxylase was considerably lowered, whereas that of PEP carboxylase was slightly increased. It is considered that inhibition of photosynthesis due to the action of ABA is caused to a great extent by the obstruction of the C-3 pathway and reduced activity of RuBP carboxylase, whereas (β-carboxylation was not blocked.


Sign in / Sign up

Export Citation Format

Share Document