The Route, Control and Compartmentation of Auxin Synthesis

1993 ◽  
Vol 20 (5) ◽  
pp. 527 ◽  
Author(s):  
HM Nonhebel ◽  
TP Cooney ◽  
R Simpson

The study of indole-3-acetic acid synthesis has undergone something of a revival recently in an attempt to understand the control of IAA levels. Results are, however, contradictory with three separate hypotheses emerging. Our own work supports older evidence for L-tryptophan as the IAA precursor and appears to simplify the metabolism of tryptophan to IAA. Work comparing incorporation of 2H from 2H2O into IAA, tryptophan, tryptamine and indole-3-pyruvate in tomato shoots showed that the indole-3-pyruvate became labelled at a rate compatible with it being the sole intermediate between tryptophan and indole-3-acetaldehyde. Results also showed that tryptamine was not involved in IAA synthesis although it was present. Indole-3-acetaldoxime was not detected in tomato shoots. An aromatic aminotransferase able to catalyse the synthesis of indole-3-pyruvate has been purified from mung beans. This enzyme was separated from aspartate aminotransferase and is fairly specific for aromatic L-amino acids. Other work, however, has implicated D-tryptophan as a more direct precursor than the L-enantiomer. A D-tryptophan aminotransferase has been isolated from dark grown pea seedlings. Finally, other recent work has indicated the existence of an alternative biosynthetic route to IAA which does not involve tryptophan. These results are reviewed in this paper and the apparent contradictions between them discussed.

Molecules ◽  
2019 ◽  
Vol 24 (7) ◽  
pp. 1411 ◽  
Author(s):  
Pengfan Zhang ◽  
Tao Jin ◽  
Sunil Kumar Sahu ◽  
Jin Xu ◽  
Qiong Shi ◽  
...  

Bacterial indole-3-acetic acid (IAA), an effector molecule in microbial physiology, plays an important role in plant growth-promotion. Here, we comprehensively analyzed about 7282 prokaryotic genomes representing diverse bacterial phyla, combined with root-associated metagenomic data to unravel the distribution of tryptophan-dependent IAA synthesis pathways and to quantify the IAA synthesis-related genes in the plant root environments. We found that 82.2% of the analyzed bacterial genomes were potentially capable of synthesizing IAA from tryptophan (Trp) or intermediates. Interestingly, several phylogenetically diverse bacteria showed a preferential tendency to utilize different pathways and tryptamine and indole-3-pyruvate pathways are most prevalent in bacteria. About 45.3% of the studied genomes displayed multiple coexisting pathways, constituting complex IAA synthesis systems. Furthermore, root-associated metagenomic analyses revealed that rhizobacteria mainly synthesize IAA via indole-3-acetamide (IAM) and tryptamine (TMP) pathways and might possess stronger IAA synthesis abilities than bacteria colonizing other environments. The obtained results refurbished our understanding of bacterial IAA synthesis pathways and provided a faster and less labor-intensive alternative to physiological screening based on genome collections. The better understanding of IAA synthesis among bacterial communities could maximize the utilization of bacterial IAA to augment the crop growth and physiological function.


1972 ◽  
Vol 50 (7) ◽  
pp. 813-829 ◽  
Author(s):  
J. C. Forest ◽  
F. Wightman

The development of aromatic aminotransferase activity was examined in cotyledons, roots, and shoots of bushbean seedlings growing under light or dark conditions for the first 2 weeks after germination. All three aromatic amino acid – α-ketoglutarate aminotransferase activities were found to have similar patterns of development in comparable organs grown under the two environmental conditions, and the changes in levels of activity appeared unrelated to variations in the endogenous amounts of free aromatic amino acids in the organs of these seedlings. The highest total activity for all three transamination reactions was found in the shoots of light-grown seedlings after 14 days, whereas the aminotransferases showing highest specific activity were found in roots of both kinds of seedlings after 8 days of growth. The intracellular distribution of the three aromatic aminotransferase activities and of aspartate aminotransferase activity was investigated by differential centrifugation of root homogenates. Only a total of 10% of these two activities was found in the two particulate fractions; the soluble protein in the final supernatant fraction accounted for almost 90% of the total aromatic and aspartate aminotransferase activities.The aromatic aminotransferase in the soluble protein fraction from seedling roots was purified about 600-fold by pH precipitation, ammonium sulfate fractionation, and Sephadex chromatography, and the recovery obtained was 30–35% based on total activity. It was observed that the specific activity for aspartate–α-ketoglutarate aminotransferase increased proportionally to the increase in aromatic aminotransferase activities during the different steps of purification. Gel electrophoresis of the purified fraction revealed only one protein band which corresponded to the product-specific stained band for the three aromatic aminotransferase activities assayed on other gels. The molecular weight of the purified aminotransferase was found to be about 128 000 daltons and its Stokes radius was calculated to be 43 ± 3 Å. The pH optima for the three aromatic aminotransferase activities and for aspartate aminotransferase activity were all found to be 8.5. The purified enzyme showed no specific requirement for pyridoxal phosphate and an examination of its amino acid substrate specificity revealed that it was able to catalyze transamination of L-aspartic acid, L-phenylalanine, L-tyrosine, and L-tryptophan when α-ketoglutarate was provided as amino group acceptor. The enzyme was also found to catalyze transamination of L-glutamic acid when oxaloacetate was used as amino group acceptor, but neither pyruvate nor glyoxylate were utilized as amino acceptors for transamination of any of the amino acids examined. The enzyme was found to catalyze transamination of aspartic acid with much greater velocity than its rate of reaction with any of the three aromatic amino acids, and the inclusion of aspartic acid in a reaction medium at equimolar concentration with any one of the three aromatic amino acids resulted in strong inhibition of the aromatic aminotransferase activity of the enzyme. All the evidence indicates that the soluble protein fraction purified from bushbean roots contained only one aminotransferase which was able to catalyze the transamination of five L-amino acids. The demonstration of the substrate multispeciftcity of this pure enzyme represents the first evidence for a multispecific aminotransferase in plants.


1974 ◽  
Vol 31 (3) ◽  
pp. 357-365 ◽  
Author(s):  
S. Kristensen

1. Ruminal metabolism of labelled phenylacetic acid, 4-hydroxyphenylacetic acid, indole-3-acetic acid, glucose, shikimic acid, phenol, and serine was studied in vitro by short-term incubation with special reference to incorporation rates into aromatic amino acids.2. Earlier reports on reductive carboxylation of phenylacetic acid and indole-3-acetic acid in the rumen were confirmed and the formation of tyrosine from 4-hydroxyphenylacetic acid was demonstrated for the first time.3. The amount of phenylalanine synthesized from phenylacetic acid was estimated to be 2 mg/1 rumen contents per 24 h, whereas the amount synthesized from glucose might be eight times as great, depending on diet.4. Shikimic acid was a poor precursor of the aromatic amino acids, presumably owing to its slow entry into rumen bacteria.5. A slow conversion of phenol into tyrosine was observed.


1982 ◽  
Vol 37 (3-4) ◽  
pp. 174-178 ◽  
Author(s):  
B. Heilmann ◽  
W. Hartung ◽  
H. Gimmler

Abstract Using [14C]tryptophan as a precursor, the intracellular localization of indole-3-acetic acid biosynthesis in spinach mesophyll cells was investigated. Chloroplasts as well as extraplastidic compartments were able to transform tryptophan into indole-3-acetic acid.The cofactor requirement of plastidic and extraplastidic indole-3-acetic acid synthesis is shown.Light and abscisic acid treatment inhibited preparations.


1978 ◽  
Vol 61 (5) ◽  
pp. 743-747 ◽  
Author(s):  
Shih-Tung Liu ◽  
Charles D. Katz ◽  
C. Arthur Knight

Sign in / Sign up

Export Citation Format

Share Document