Asynchronous meiotic progression in porcine oocytes matured in vitro: a cause of polyspermic fertilization?

1997 ◽  
Vol 9 (2) ◽  
pp. 187 ◽  
Author(s):  
Christopher G. Grupen ◽  
Hiroshi Nagashima ◽  
Mark B. Nottle

The progression of meiosis in porcine oocytes maturedin vitro was examined and the effect of maturation interval on the incidence of polyspermic fertilization and embryonic development in vitro was investigated. In Experiment 1, it was found that oocytes selected for in vitro maturation varied considerably in terms of their meiotic progression. Approximately half of the oocytes were already undergoing germinal vesicle breakdown at the start of maturation while the remainder were at the intact germinal vesicle stage. These two populations of oocytes developed to the metaphase-II stage by 24 h and 36 h of maturation respectively. Maturation for 40 h and 44 h did not increase the percentage of oocytes at metaphase-II stage observed at 36 h. In Experiment 2, reducing the maturation interval from 44 h to 36 h did not affect the percentage of oocytes penetrated but did decrease the rate of polyspermic fertilization (5% v. 34%; P < 0 ·05). In Experiment 3, development of the embryos produced in vitro was assessed after culture for seven days. Reducing the maturation interval from 44 h to 36 h decreased the percentage of embryos developing to the 8-cell (9% v. 18%; P < 0 · 05), morula (3% v. 10%; P < 0 · 01), and blastocyst (1% v. 8%; P < 0· 001) stages. These results suggest that maturation for 44 h gives rise to a population of ‘aged’ oocytes which is susceptible to polyspermic fertilization.

2006 ◽  
Vol 18 (2) ◽  
pp. 270
Author(s):  
C. Hanna ◽  
C. Long ◽  
M. Westhusin ◽  
D. Kraemer

The objectives of this study were to determine whether the percentage of canine oocytes that resume meiosis during in vitro maturation could be increased by either increasing culture duration or by removing approximately one-half of the cumulus cells 24 h after oocytes were placed into culture. Canine female reproductive tracts were collected from a local clinic and ovaries were minced in warm TL-HEPES. Oocytes with a consistently dark ooplasm and at least two layers of cumulus cells were selected, cultured in a basic canine oocyte in vitro maturation medium consisting of TCM-199 with Earl's salts, 2.92 mM Ca-lactate, 20 mM pyruvic acid, 4.43 mM HEPES, 10% fetal calf serum, 1% Penicillin/Streptomycin (GibcoBRL, Grand Island, NY, USA), and 5 μg/mL porcine somatotropin, and incubated at 38.5°C in 5% CO2 in humidified air. Treatment groups were randomly assigned and oocytes were cultured for 60, 84, or 132 h (Basic). From each of these groups, one-half of the oocytes were pipetted through a fine bore pipette to partially remove the cumulus cells 24 h after the start of culture (Basic–1/2). At the end of culture, all oocytes were denuded and the nuclear status was observed with Hoechst 33342 under ultraviolet fluorescence. All data were analyzed by ANOVA with P < 0.05. Since the canine oocyte is ovulated at the germinal vesicle (GV) stage of meiosis and requires up to five days to mature in the oviduct, it was hypothesized that an increased culture time would allow for more oocytes to undergo nuclear maturation to metaphase II (MII). It was also hypothesized that partial removal of cumulus cells would decrease the cumulus cell component in the ooplasm that sustains meiotic arrest, allowing for more oocytes to resume meiosis (RM = germinal vesicle breakdown to MII). Results within each treatment group indicate that there is no significant difference between culture duration and the percent of oocytes that mature to MII. Additionally, there was no significance in the percent of oocytes that resumed meiosis after partial cumulus cell removal. Taken together, these data suggest that neither treatment is effective in canine in vitro maturation systems, given the current maturation culture conditions. Table 1. Nuclear status* of oocytes for three time periods with or without partial cumulus cell removal


Reproduction ◽  
2002 ◽  
pp. 557-564 ◽  
Author(s):  
M Shimada ◽  
N Kawano ◽  
T Terada

Steroid hormones, such as progesterone, oestrogen, androgen and meiosis activating sterols, are secreted from cumulus cells that are stimulated by gonadotrophins during maturation of oocytes in vitro. These steroid hormones may be absorbed by mineral oil or paraffin oil; however, in vitro maturation of pig oocytes is commonly performed using medium covered by oil. In this study, high concentrations of progesterone, oestradiol and testosterone were detected in the culture medium after pig cumulus-oocyte complexes (COCs) were cultured with FSH and LH for 44 h in medium without an oil overlay. However, high concentrations of these steroid hormones were not detected in medium when COCs were cultured with the mineral oil overlay. When high concentrations of these steroid hormones were secreted by COCs, germinal vesicle breakdown (GVBD) and the activation of p34(cdc2) kinase and mitogen-activated protein (MAP) kinase in oocytes occurred earlier in comparison with oocytes cultured in medium covered with mineral oil. Moreover, a decrease in p34(cdc2) kinase activity during meiotic progression beyond metaphase I was observed in oocytes cultured in conditions under which high concentrations of steroid hormones were secreted by COCs. In addition, the rate of development to the blastocyst stage after IVF was higher in oocytes matured in medium without an oil overlay. These adverse effects of oil may be explained by absorption by the oil of cumulus-secreted steroids or by the release of toxic compounds into the medium.


2018 ◽  
Vol 26 (11) ◽  
pp. 1519-1537
Author(s):  
Maxim Filatov ◽  
Yulia Khramova ◽  
Maria Semenova

Mechanisms of meiotic prophase I arrest maintenance (germinal vesicle [GV] stage) and meiotic resumption (germinal vesicle breakdown [GVBD] stage) in mammalian oocytes seem to be very complicated. These processes are regulated via multiple molecular cascades at transcriptional, translational, and posttranslational levels, and many of them are interrelated. There are many molecular cascades of meiosis maintaining and meiotic resumption in oocyte which are orchestrated by multiple molecules produced by pituitary gland and follicular cells. Furthermore, many of these molecular cascades are duplicated, thus ensuring the stability of the entire system. Understanding mechanisms of oocyte maturation is essential to assess the oocyte status, develop effective protocols of oocyte in vitro maturation, and design novel contraceptive drugs. Mechanisms of meiotic arrest maintenance at prophase I and meiotic resumption in mammalian oocytes are covered in the present article.


2015 ◽  
Vol 27 (7) ◽  
pp. 1082 ◽  
Author(s):  
Maricy Apparicio ◽  
Giuliano Q. Mostachio ◽  
Tathiana F. Motheo ◽  
Aracelle E. Alves ◽  
Luciana Padilha ◽  
...  

The aim of this study was to evaluate the influence of different bi-phasic systems with gonadotrophins and steroids on in vitro maturation rates of oocytes obtained from bitches at different reproductive stages (follicular, luteal, anoestrous). In System A (control) oocytes were matured for 72 h in base medium (BM) with 10 IU mL–1 human chorionic gonadotrophin (hCG), 1 μg mL–1 progesterone (P4) and 1 μg mL–1 oestradiol (E2); in bi-phasic System B oocytes were matured for 48 h in BM with hCG and for 24 h in BM with P4; in bi-phasic System C oocytes were matured for 48 h in BM with hCG, P4 and E2, and for 24 h in BM with P4; in System D, oocytes were cultured in BM without hormonal supplementation. Data were analysed by ANOVA. There was a positive effect of the bi-phasic systems on germinal vesicle breakdown, metaphase I and metaphase II rates, irrespective of reproductive status (P < 0.05). Bi-phasic systems were also beneficial for cortical granule distribution (an indication of cytoplasmic maturation) and its relationship to nuclear status: 74.5% of the oocytes cultured in System B and 85.4% of those cultured in System C presented both nuclear and cytoplasmic maturation (P < 0.001). The stage of the oestrous cycle did not influence maturation rates.


2006 ◽  
Vol 18 (2) ◽  
pp. 276
Author(s):  
H. J. Oh ◽  
M. K. Kim ◽  
Y. H . Fibrianto ◽  
G. Jang ◽  
H. J. Kim ◽  
...  

In most mammals, maturation occurs within the ovarian follicle, and preovulatory oocytes are ovulated and ready for fertilization within the oviduct. In contrast, bitch ovulate primary oocytes, over a three day period, undergo both maturation and fertilization within the oviduct. The present study was conducted to evaluate the effects of canine synthetic oviduct fluid (cSOF) supplemented with the various energy substrates on in vitro maturation of canine oocytes. Oocytes were recovered by mincing ovaries collected after ovariohysterectomy in bitches at the follicular stage. Only oocytes with more than two layers of cumulus cells and with homogeneous cytoplasm >100 mm in diameter were selected. Then, oocytes cultured in tissue culture medium (TCM)-199 (control) or cSOF supplemented with various concentrations of glucose (0, 1.11, 3.89, or 5.56 mM, Exp. 1) or fructose (0, 1.11, 3.89, or 5.56 mM, Exp. 1), pyruvate (0, 0.1, 0.25, or 0.5 mM, Exp. 2) or lactate (0, 0.5, 1.0, or 5.0 mM, Exp. 3). In Exp. 4, the combined effects of glucose (1.11 mM), pyruvate (0.5 mM) and lactate (5.0 mM) on nuclear maturation of canine oocytes were investigated. A total of 2990 canine oocytes from 205 ovaries were used for experiments with replication at least three times. The oocytes were cultured for 72 h at 38.5�C in a humidified atmosphere of 5% CO2 in air. After 72 h, the oocytes were stained with 1.9 �g/mL Hoechst 33342 in glycerol and then evaluated under UV light to determine the stage of meiosis as follows: germinal vesicle (GV), germinal vesicle breakdown (GVBD), metaphase I (MI), metaphase II (MII) with first polar body. The results of Exp. 1 showed that maturation of canine oocytes to MII was significantly higher (P < 0.05) in medium supplemented with 1.11 mM glucose (4.8%) than for the control (1.8%) and the other glucose-supplemented groups (0 to 1.8%). In Exp. 2, oocytes cultured in cSOF supplemented with 0.5 mM pyruvate showed a significantly higher (P < 0.05) maturation rate to MII (6.3%) than did the other pyruvate-supplemented (0, 0.8, or 2.5%) groups or the control (2.4%). In Exp. 3, more oocytes were matured to the MII stage in cSOF supplemented with 5.0 mM lactate (7.3%) than were the other lactate-supplemented groups (0 to 2.4%) or the control (2.5%). Results of Exp. 4 showed more oocytes progressed to MII in cSOF supplemented with 0.5 mM pyruvate (8.2%), 1.11 mM glucose + 0.5 mM pyruvate (7.4%), or 1.11 mM glucose + 0.5 mM pyruvate 0.5 + 5.0 mM lactate (7.3%) than did the other combination groups (2.2 to 5.2%). In conclusion, the present study demonstrated that supplementing cSOF with 1.11 mM glucose, 0.5 mM pyruvate, or 5.0 mM lactate significantly increased the maturation of canine oocytes to MII, and the combined supplementation of 1.11 mM glucose, 0.5 mM pyruvate, and 5.0 mM lactate further promoted oocyte nuclear maturation compared to 1.11 mM glucose alone and the control. This study was supported by grants from the Korean MOST (Top Scientist Fellowship) and MAF (Biogreen 21 #20050301-034-443-026-01-00).


2014 ◽  
Vol 26 (1) ◽  
pp. 199
Author(s):  
M. P. Cervantes ◽  
M. Anzar ◽  
R. J. Mapletoft ◽  
J. M. Palomino ◽  
G. P. Adams

Technologies are being developed to conserve the genetic diversity of wood bison. Knowledge of the characteristics of in vivo and in vitro maturation of the cumulus–oocyte complex (COC) are needed in wood bison to design efficient in vitro embryo production protocols. The objectives were to (1) determine the optimal interval after hCG treatment for in vivo maturation of COC in superstimulated wood bison, and (2) compare the characteristics of COC after in vitro and in vivo maturation. Ovarian synchronization was induced in 25 bison during October and November by giving a luteolytic dose of prostaglandin followed 8 days later by follicular ablation (Day –1). Ovarian superstimulation was induced with FSH (Folltropin-V) given i.m. on Day 0 (300 mg) and Day 2 (100 mg). A second luteolytic dose of prostaglandin was given on Day 3. Bison were assigned randomly to 5 groups (n = 5/group). The COC were collected by transvaginal follicle aspiration on Day 4 and were either assessed immediately (0 h, control), or matured in vitro for 24 or 30 h (in vitro maturation), or collected on Day 5 (in vivo maturation), 24 or 30 h after bison were given 2000 IU of hCG i.m. on Day 4. In vitro maturation was done in TCM-199 with 5% calf serum, 5 μg mL–1 LH, 0.5 μg mL–1 FSH, and 0.05 μg mL–1 gentamicin, at 38.5°C and in a 5% CO2 humidified atmosphere. Nuclear maturation was classified as germinal vesicle (GV), germinal vesicle breakdown (GVBD), metaphase I (MI), or metaphase II (MII) with anti-lamin AC/DAPI staining. Groups were compared by analysis of variance and Fisher's exact test (Table 1). A mean (±s.e.m.) of 7.3 ± 1.7 COC were collected per bison, with no difference among groups. The COC in the control (0 h) group were at the nonexpanded GV stage. Cumulus cells were more expanded after in vivo than in vitro maturation, and the percentage of fully expanded COC was the highest in the 30-h in vivo maturation group (87%; P < 0.05). The greatest number of oocytes reached MII stage after 24 h of in vitro maturation, and 30 h of in vivo maturation. In conclusion, nuclear maturation occurred more quickly in vitro compared with in vivo, but the degree and incidence of cumulus expansion was greater after in vivo maturation. The competence of oocytes to undergo fertilization and develop into embryos remains to be investigated. Table 1.Cumulus expansion and nuclear maturation of wood bison oocytes


Animals ◽  
2019 ◽  
Vol 9 (4) ◽  
pp. 163
Author(s):  
Payungsuk Intawicha ◽  
Li-Kuang Tsai ◽  
Shih-Ying Yen ◽  
Neng-Wen Lo ◽  
Jyh-Cherng Ju

The mitogen-activated kinase (MAPK) p38, a member of the MAPK subfamily, is conserved in all mammalian cells and plays important roles in response to various physiologic cues, including mitogens and heat shock. In the present study, MAPK p38 protein expression in porcine oocytes was analyzed during in vitro maturation (IVM) by Western blotting and immunocytochemistry. The levels of p-p38 or activated p38 and p38 expression were at the lowest in the germinal vesicle (GV) stage oocyte, gradually rising at the germinal vesicle breakdown (GVBD) and then reaching a plateau throughout the IVM culture (p < 0.05). Similarly, the expression level of total p38 was also lower in the GV oocyte than in the oocyte of other meiotic stages and uprising after GVBD and remained high until the metaphase III (MII) stage (p < 0.05). In the GV stage, phosphorylated p38 (p-p38) was initially detectable in the ooplasm and subsequently became clear around the nucleus and localized in the ooplasm at GVBD (18 h post-culture). During the metaphase I (MI) and metaphase II (MII) stages, p-p38 was evenly distributed throughout the ooplasm after IVM for 30 or 42 h. We found that the subcellular localization increased in p-p38 expression throughout oocyte maturation (p < 0.05) and that dynamic reorganization of the cytoskeleton, including microfilaments and microtubules, was progressively changed during the course of meiotic maturation which was likely to be associated with the activation or networking of p38 with other proteins in supporting oocyte development. In conclusion, the alteration of p38 activation is essential for the regulation of porcine oocyte maturation, accompanied by the progressive reorganization and redistribution of the cytoskeleton and MAPK p38, respectively, in the ooplasm.


2016 ◽  
Vol 28 (2) ◽  
pp. 200
Author(s):  
A. Oh ◽  
J.-X. Jin ◽  
S. Lee ◽  
G. A. Kim ◽  
B. C. Lee

Perilipin, one of the perilipin adipophilin tail-interacting protein of 47 kDa (PAT) family, has been found to coat the surface of intracellular lipid droplets. It limits the interaction of lipases with intracellular lipid droplets and is involved in the formation and regulation of lipids in various kinds of cells. However, little is known about the effect of perilipin on porcine oocytes and cumulus cells. Therefore, this study aimed to detect the expression of perilipin1 (PLIN1), perilipin2 (PLIN2), perilipin3 (PLIN3), and perilipin4 (PLIN4) in porcine oocytes and cumulus cells at 4 stages of in vitro maturation (IVM) by quantitative real-time PCR (RT-qPCR). Germinal vesicle (GV), germinal vesicle breakdown (GVBD), metaphase I (MI), and metaphase II (MII) stage were found to occur predominantly at 18 to 24 h, after 24 h, 30 to 36 h, and 36 to 44 h of IVM, respectively. Cumulus-oocyte complexes (COC) were cultured in IVM medium and oocytes and cumulus cells were isolated after different durations of IVM (20, 26, 32, and 44 h). The data were analysed by one-way ANOVA using GraphPad Prism 5.0 (GraphPad Software, Sn Diego, CA, USA) and the threshold for statistical significance was set at P < 0.05. Messenger RNA expression of PLIN1 was not detected in either oocytes or cumulus cells during all periods of IVM. PLIN2, on the other hands, showed a significant lower expression in GVBD, MI, and MII oocytes compared with the GV oocytes, but showed no difference in cumulus cells. PLIN3 expression was significantly decreased in oocytes of MI stage, whereas PLIN3 from cumulus cells was expressed significantly lower in GVBD and MII stage compared with GV stage. Expression of PLIN4 was significantly decreased in only cumulus cells of GVBD and MI stage. These findings suggest that PLIN2 may have important roles in lipid metabolism during porcine oocyte maturation, whereas PLIN4 may play a major role in cumulus cells. PLIN3 can be hypothesised as a common lipid droplet-associated protein in both oocytes and cumulus cells. Further studies should be conducted to characterise the expression and distribution of PLIN1, PLIN2, PLIN3, and PLIN4 in porcine oocytes and cumulus cells. This study was supported by Ministry of Trade, Industry and Energy (#10048948), Korea IPET (#311011-05-4-SB010), Research Institute for Veterinary Science, and the BK21 plus program.


Sign in / Sign up

Export Citation Format

Share Document