scholarly journals In utero cell transfer between porcine littermates

2011 ◽  
Vol 23 (2) ◽  
pp. 297 ◽  
Author(s):  
Andrea McConico ◽  
Kim Butters ◽  
Karen Lien ◽  
Bruce Knudsen ◽  
Xiaosheng Wu ◽  
...  

Trafficking of cells between mother and fetus during the course of normal pregnancy is well documented. Similarly, cells are known to travel between twins that share either a placenta (i.e. monozygotic) or associated chorion (i.e. monochorionic). Transferred cells are thought to be channelled via the vessels of the placenta or vascular connections established via the chorion and the long-term presence of these cells (i.e. microchimerism) can have important consequences for immune system function and reparative capacity of the host. Whether cells can be transferred between twins with separate placentas and separate chorions (i.e. no vascular connections between placentas) has not been investigated nor have the biological consequences of such a transfer. In the present study, we tested the possibility of this type of cell transfer by injecting human cord blood-derived cells into a portion of the littermates of swine and probing for human cells in the blood and tissues of unmanipulated littermates. Human cells were detected in the blood of 78% of unmanipulated littermates. Human cells were also detected in various tissues of the unmanipulated littermates, including kidney (56%), spleen (33%), thymus (11%) and heart (22%). Human cells were maintained in the blood until the piglets were sacrificed (8 months after birth), suggesting the establishment of long-term microchimerism. Our findings show that the transfer of cells between fetuses with separate placentas and separate chorions is significant and thus such twins may be subject to the same consequences of microchimerism as monozygotic or monochorionic counterparts.

Nutrients ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 118
Author(s):  
Anna Skarpańska-Stejnborn ◽  
Mirosława Cieślicka ◽  
Hanna Dziewiecka ◽  
Sławomir Kujawski ◽  
Anita Marcinkiewicz ◽  
...  

An intensive physical exercise program could lead to a decrease in immune system function. Effects of long-term supplementation of bovine colostrum on the response of immune function on physical exercise test in athletes were examined. Twenty-seven elite female basketball players (age 16–19) were randomly assigned to either an experimental group or a control group. Eventually, n = 11 athletes completed intervention in the experimental group (3.2 g bovine colostrum orally twice a day for 24 weeks), while n = 9 athletes in the control group were given a placebo. Before the supplementation, after 3 and 6 months, subjects performed the physical exercise stress test. Before, just after, and 3 h after physical exercise testing, blood was drawn and immune system indicators were examined. Plasma interleukin (IL)-1alpha, IL-2, IL-10, IL-13, tumor necrosis factor (TNF) alpha, creatine kinase (CK MM), immunoglobulin G (IgG), insulin-like growth factor 1 (IGF1), and WBC, lymphocyte (LYM), monocyte (MON), and granulocyte (GRA) were measured. A statistically significant change in IL-10 in response to the exercise program during the supplementation period in both groups was observed (p = 0.01). However, the results of the rest of the comparisons were statistically insignificant (p > 0.05). Contrary to our initial hypothesis, there were no significant effects of bovine supplementation on the dynamics of immune system function indicators.


Cancer ◽  
2002 ◽  
Vol 94 (2) ◽  
pp. 539-551 ◽  
Author(s):  
Adrian S. Fairey ◽  
Kerry S. Courneya ◽  
Catherine J. Field ◽  
John R. Mackey

2009 ◽  
Vol 183 (1) ◽  
pp. 75-82 ◽  
Author(s):  
Jonathan H. Esensten ◽  
Michael R. Lee ◽  
Laurie H. Glimcher ◽  
Jeffrey A. Bluestone

2021 ◽  
Vol 12 ◽  
Author(s):  
Zongzhi Liu ◽  
Wei Chen ◽  
Zilong Zhang ◽  
Junyun Wang ◽  
Yi-Kun Yang ◽  
...  

The DNA methylation of human offspring can change due to the use of assisted reproductive technology (ART). In order to find the differentially methylated regions (DMRs) in ART newborns, cord blood maternal cell contamination and parent DNA methylation background, which will add noise to the real difference, must be removed. We analyzed newborns’ heel blood from six families to identify the DMRs between ART and natural pregnancy newborns, and the genetic model of methylation was explored, meanwhile we analyzed 32 samples of umbilical cord blood of infants born with ART and those of normal pregnancy to confirm which differences are consistent with cord blood data. The DNA methylation level was lower in ART-assisted offspring at the whole genome-wide level. Differentially methylated sites, DMRs, and cord blood differentially expressed genes were enriched in the important pathways of the immune system and nervous system, the genetic patterns of DNA methylation could be changed in the ART group. A total of three imprinted genes and 28 housekeeping genes which were involved in the nervous and immune systems were significant different between the two groups, six of them were detected both in heel blood and cord blood. We concluded that there is an ART-specific DNA methylation pattern involved in neuro- and immune-system pathways of human ART neonates, providing an epigenetic basis for the potential long-term health risks in ART-conceived neonates.


2020 ◽  
Vol 21 (3) ◽  
pp. 829 ◽  
Author(s):  
João Lobo ◽  
Carmen Jerónimo ◽  
Rui Henrique

In the last years, we have witnessed remarkable advances in targeted therapies for cancer patients. There is a growing effort to either replace or reduce the dose of unspecific, systemic (chemo)therapies, given the associated short- and long-term side effects, by introducing more specific targeted therapies as single or combination agents. Due to the well-known implications of the immune system and epigenetic landscape in modulating cancer development, both have been explored as potential targets in several malignancies, including those affecting the genitourinary tract. As the immune system function is also epigenetically regulated, there is rationale for combining both strategies. However, this is still rather underexplored, namely in urological tumors. We aim to briefly review the use of immune therapies in prostate, kidney, bladder, and testicular cancer, and further describe studies providing supporting evidence on their combination with epigenetic-based therapies.


Sign in / Sign up

Export Citation Format

Share Document