Dose-dependent effects of gonadotropin on oocyte developmental competence and apoptosis

2011 ◽  
Vol 23 (8) ◽  
pp. 990 ◽  
Author(s):  
Shan Liu ◽  
Huai L. Feng ◽  
Dennis Marchesi ◽  
Zi-Jiang Chen ◽  
Avner Hershlag

The aim of the present study was to evaluate the effect of gonadotropins (Gn) on oocyte maturation, developmental competence and apoptosis in an animal model. Bovine cumulus–oocyte complexes (COCs) were matured for 24 h in media supplemented with varying concentrations of Bravelle (B), B + Menopur (B + M) or B + Repronex (B + R) (Ferring Pharmaceuticals, Parsiappany, NJ, USA). Then, nuclear maturation, embryo development, and apoptosis in cumulus cells and oocytes were evaluated. Low to moderate Gn concentrations (75–7500 mIU mL–1) effectively improved nuclear maturation and in vitro development. Higher concentrations of Gn (75 000 mIU mL–1) did not have any added beneficial effects and nuclear maturation and blastocyst rates in the presence of these concentrations were comparable to control (P > 0.05). Most COCs showed slight apoptosis when exposed to 75, 750 and 7500 mIU mL–1 Gn; however, when the concentration was increased to 75 000 mIU mL–1, the proportion of moderately apoptotic COCs increased. In conclusion, extremely high concentrations of Gn have detrimental effects on oocyte nuclear maturation and embryo development and increase apoptosis in cumulus cells, suggesting the importance of judicious use of Gn in assisted reproductive technologies (ART).

2018 ◽  
Vol 30 (1) ◽  
pp. 203 ◽  
Author(s):  
A. Salama ◽  
M. Fathi ◽  
M. R. Badr ◽  
A. R. Moawad

In vitro embryo production (IVP) in the domestic bitch is important for conservation of endangered canids. Compared with various domestic animals, the development of assisted reproductive technologies (ART) in the dog has lagged behind, mainly due to the low percentage of oocytes that can reach metaphase II (MII) stage after in vitro maturation (IVM). Beneficial effects of l-carnitine (LC) on embryonic development in culture have been reported in many mammalian species; however, no studies have been conducted in dogs. The aim of the present study was to investigate the effect of LC supplementation during IVM of canine oocytes on nuclear maturation, fertilization status, and pre-implantation development following IVM/IVF. Cumulus-oocyte complexes (COC) were collected by slicing ovaries obtained from dogs (n = 20, 1 to 6 years of age) after ovariohysterectomy. The COC were subjected to IVM for 72 h in a medium (TCM-199) supplemented with LC at different concentrations (0.1, 0.3, 0.6, 1.0, or 2.0 mg mL−1) or without LC supplements (0 mg mL−1; control). Matured oocytes were fertilized in vitro with frozen–thawed spermatozoa, and presumptive zygotes were cultured in SOF medium for 7 days. Frequencies of nuclear maturation (72 h post-IVM), fertilization rates (18 h post-insemination), and embryo development (Days 2 to 5 post-insemination) were evaluated. Data were analysed by one-way ANOVA followed by Tukey’s multiple comparisons test. Supplementation of IVM medium with 0.3 or 0.6 mg mL−1 LC significantly improved (P ≤ 0.05) maturation (35.4% and 41.4%) and fertilization (21.3% and 25.8%) rates compared with the controls and with other LC-supplemented groups; values ranged from 20.1% to 25.0% for maturation and from 12.1% to 14.6% for fertilization. Cleavage (2- to 16-cell stages) was significantly higher (P ≤ 0.05) in the 0.6 mg mL−1 LC supplemented group than the 0.3 mg mL−1 supplemented group (16.3% v. 13.3%). These values were significantly higher (P ≤ 0.05) than those in other groups. Interestingly, 4.5% of IVM/IVF oocytes were developed to morula in 0.6 mg mL−1 LC supplemented group which was significantly higher (P ≤ 0.05) than those developed in the 0.3 mg mL−1 supplemented group (1.0%). No embryos developed beyond the 2- to 16-cell stage in the rest of the groups. In conclusion, l-carnitine supplementation during IVM is particularly efficient in improving nuclear maturation and pre-implantation embryo development of canine oocytes after IVF. These outcomes are important for the improvement of IVM conditions that can advance the efficiency of ART in dogs.


2005 ◽  
Vol 17 (3) ◽  
pp. 361 ◽  
Author(s):  
David K. Gardner ◽  
Michelle Lane

The environment to which the mammalian embryo is exposed during the preimplantation period of development has a profound effect on the physiology and viability of the conceptus. It has been demonstrated that conditions that alter gene expression, and in some instances the imprinting status of specific genes, have all previously been shown to adversely affect cell physiology. Thus, questions are raised regarding the aetiology of abnormal gene expression and altered imprinting patterns, and whether problems can be averted by using more physiological culture conditions. It is also of note that the sensitivity of the embryo to its surroundings decreases as development proceeds. Post compaction, environmental conditions have a lesser effect on gene function. This, therefore, has implications regarding the conditions used for IVF and the culture of the cleavage stage embryo. The developmental competence of the oocyte also impacts gene expression in the embryo, and therefore superovulation has been implicated in abnormal methylation and imprinting in the resultant embryo. Furthermore, the genetics and dietary status of the mother have a profound impact on embryo development and gene expression. The significance of specific animal models for human assisted reproductive technologies (ART) is questioned, given that most cattle data have been obtained from in vitro-matured oocytes and that genes imprinted in domestic and laboratory animals are not necessarily imprinted in the human. Patients treated with ART have fertility problems, which in turn may predispose their gametes or embryos to greater sensitivities to the process of ART. Whether this is from the drugs involved in the ovulation induction or from the IVF, intracytoplasmic sperm injection or culture procedures themselves remains to be determined. Alternatively, it may be that epigenetic alterations are associated with infertility and symptoms are subsequently revealed through ART. Whatever the aetiology, continued long-term monitoring of the children conceived through ART is warranted.


Zygote ◽  
1999 ◽  
Vol 7 (3) ◽  
pp. 203-210 ◽  
Author(s):  
Lalantha R. Abeydeera ◽  
Wei-Hua Wang ◽  
Thomas C. Cantley ◽  
Randall S. Prather ◽  
Billy N. Day

The present study examined the effect of different concentrations of cysteine in the presence of a thiol compound, β-mercaptoethanol (BME), during in vitro maturation (IVM) of pig oocytes on cumulus expansion, nuclear maturation, intracellular glutathione (GSH) level and subsequent embryonic development after in vitro fertilisation (IVF). In experiment 1, oocytes were matured in NCSU 23 medium containing 10% porcine follicular fluid, 25 μM BME, 0.5 μg/ml LH, 0.5 μg/ml FSH and 0, 0.1, 0.2 or 0.4 mg/ml cysteine for 20–22 h and then without hormonal supplements for an additional 20–22 h. After culture, cumulus cells were removed and a proportion of oocytes fixed to examine the rate of nuclear maturation. The remaining oocytes were co-incubated with spermatozoa for 5–6 h and putative zygotes were transferred to NCSU 23 medium containing 0.4% bovine serum albumin for 144 h. A proportion of putative zygotes were fixed 12 h after insemination to examine fertilisation parameters. In experiment 2, oocytes were matured as in experiment 1 and the GSH content was measured by a DTNB-GSSG reductase recycling assay. No mean differences among treatments were observed in nuclear maturation (78–89%). The mean differences in penetration rate (69–77%), polyspermy rate (31–40%), male pronuclear formation rate (93–96%) or mean number of sperm per oocyte (1.5-1.8) were not affected by the presence or absence of cysteine during oocyte maturation. Also no difference was observed in cleavage rates 48 h after insemination. However, compared with no addition (19%), the presence of 0.1-0.4 mg/ml cysteine during IVM increased (p < 0.001) the proportion of blastocysts (32–39%) at 144 h. In comparison with controls (5.6 pmol/oocyte), the GSH content of oocytes matured in the presence of cysteine was significantly (p < 0.001) higher (13–15 pmol/oocyte) with no mean differences among different cysteine concentrations. The results indicate that in the presence of a thiol compound, supplementation of IVM medium with cysteine can increase the GSH level and improve the developmental competence of pig oocytes following fertilisation. Further, no effect on either GSH level or embryo development was observed by increasing the levels of cysteine supplementation from 0.1 to 0.4 mg/ml.


2015 ◽  
Vol 27 (8) ◽  
pp. 1125 ◽  
Author(s):  
Michael J. Bertoldo ◽  
Yann Locatelli ◽  
Christopher O'Neill ◽  
Pascal Mermillod

The processes of assisted reproductive technologies (ART) involve a variety of interventions that impact on the oocyte and embryo. Critically, these interventions cause considerable stress and coincide with important imprinting events throughout gametogenesis, fertilisation and early embryonic development. It is now accepted that the IVM and in vitro development of gametes and embryos can perturb the natural course of development to varying degrees of severity. Altered gene expression and, more recently, imprinting disorders relating to ART have become a focused area of research. Although various hypotheses have been put forward, most research has been observational, with little attempt to discover the mechanisms and periods of sensitivity during embryo development that are influenced by the culture conditions following fertilisation. The embryo possesses innate survival factor signalling pathways, yet when an embryo is placed in culture, this signalling in response to in vitro stress becomes critically important in mitigating the effects of stresses caused by the in vitro environment. It is apparent that not all embryos possess this ability to adequately adapt to the stresses experienced in vitro, most probably due to an inadequate oocyte. It is speculated that it is important that embryos use their survival signalling mechanisms to maintain normal epigenetic programming. The seeming redundancy in the function of various survival signalling pathways would support this notion. Any invasion into the natural, highly orchestrated and dynamic process of sexual reproduction could perturb the normal progression of epigenetic programming. Therefore the source of gametes and the subsequent culture conditions of gametes and embryos are critically important and require careful attention. It is the aim of this review to highlight avenues of research to elucidate the effects of stress and the relationship with epigenetic programming. The short- and long-term health and viability of human and animal embryos derived in vitro will also be discussed.


PLoS ONE ◽  
2021 ◽  
Vol 16 (3) ◽  
pp. e0247518
Author(s):  
Thais Preisser Pontelo ◽  
Mauricio Machaim Franco ◽  
Taynan Stonoga Kawamoto ◽  
Felippe Manoel Costa Caixeta ◽  
Ligiane de Oliveira Leme ◽  
...  

This study aimed to evaluate the effect of scriptaid during pre-maturation (PIVM) and/or maturation (IVM) on developmental competence of bovine oocytes. Cumulus-oocyte complexes (COCs) were submitted to PIVM for 6 h in the presence or absence of scriptaid. COCs were distributed into five groups: T1-IVM for 22 h, T2-PIVM for 6 h and IVM for 22 h, T3-PIVM with scriptaid for 6 h and IVM for 22 h, T4-PIVM for 6 h and IVM with scriptaid for 22 h, and T5-PIVM with scriptaid for 6 h and IVM with scriptaid for 22 h. Nuclear maturation, gene expression, cumulus cells (CCs) expansion, and embryo development and quality were evaluated. At the end of maturation, all groups presented the majority of oocytes in MII (P>0.05). Only HAT1 gene was differentially expressed (P<0.01) in oocytes with different treatments. Regarding embryo development at D7, T4 (23%) and T5 (18%) had lower blastocyst rate (P<0.05) than the other treatments (T1 = 35%, T2 = 37% and T3 = 32%). No effect was observed when scriptaid in PIVM was used in less competent oocytes (P>0.05). In conclusion, presence of scriptaid in PIVM and/or IVM did not improve developmental competence or embryo quality.


2013 ◽  
Vol 25 (1) ◽  
pp. 180
Author(s):  
N. Kashiwazaki ◽  
N. Kohaya ◽  
K. Fujiwara ◽  
K. Furui ◽  
J. Ito

Unfertilized oocytes are one of the most desired germ-cell stages for cryopreservation because these cryopreserved oocytes can be used for assisted reproductive technologies, including IVF and intracytoplasmic sperm injection. However, in general, the fertility and developmental ability of cryopreserved oocytes are still low. We have recently reported that, in the presence of surrounding cumulus cells, matured mouse oocytes vitrified using calcium-free media and ethylene glycol retain their developmental competence (Kohaya et al. 2011 J. Reprod. Dev. 57, 675–680). Since the previous study was carried out using ICR mice (closed colony), we examined whether our protocol can be applied for C57BL/6J mice (inbred strain), which are commonly used for production of transgenic and knockout mice. The effect of cumulus cells on the ability of C57BL/6J mouse oocytes to be fertilized and develop in vitro was examined. Cumulus oocyte complexes (COC) derived from female mice with super ovulation were collected by flushing. Cumulus cells were removed for a portion of the oocytes (DO) using hyarulonidase. Oocytes from both treatment groups (COC and DO) were then vitrified according to the protocol we previously reported (Kohaya et al. 2011). After warming, vitrified COC and DO were used for IVF. All percentage data were subjected to arcsine transformation before statistical analysis. Data were analyzed by one-way ANOVA and Tukey’s test. Significance was considered at P < 0.05. The pronuclear formation rate of vitrified DO after IVF (20/58, 33.3%) was reduced compared with vitrified COC (55/90, 62.1%). Vitrified COC showed significantly (P < 0.05) higher developmental ability to develop into the 2-cell (50/90, 57.0%) and blastocyst stages (42/90, 45.9%) compared with vitrified DO [24.8% (16/58) and 18.4% (11/58), respectively]. The vitrified COC developed to term at a high success rate (51/90, 56.7%) being equivalent to the rate obtained with IVF using fresh COC (52/90, 57.8%). Taken together, the current results clearly demonstrate that, in the presence of surrounding cumulus cells, matured mouse oocytes vitrified using calcium-free media and ethylene glycol retain their developmental competence. These findings will contribute to improve oocytes vitrification in not only experimental animals but also in clinical application in human infertility.


Zygote ◽  
2021 ◽  
pp. 1-5
Author(s):  
Shiori Ashibe ◽  
Kanade Irisawa ◽  
Ken Yokawa ◽  
Yoshikazu Nagao

Summary Hyaluronidase is widely used in animal and human assisted reproductive technologies (ARTs) to remove cumulus cells around oocytes. However, adverse effects of hyaluronidase treatment, such as increased rates of degeneration and parthenogenesis, have been found after treatment of human and mouse oocytes. Currently, the mechanism(s) of the detrimental effects are unclear. The present study was initiated to identify the mechanism of adverse responses to hyaluronidase treatment in bovine oocytes and early embryos. Cumulus cells were removed from cumulus–oocyte complexes (COCs) with or without hyaluronidase and the oocytes were subjected to intracytoplasmic sperm injection (ICSI) or in vitro fertilization (IVF). Significantly lower rates of blastocyst formation were obtained in the hyaluronidase treatment group after ICSI (22.4%) and IVF (21.2%) compared with the non-hyaluronidase control groups: 36.1% after ICSI and 30.4% after IVF. Next, we examined the effect of hyaluronidase on parthenogenetic development rates and on the cytoplasmic levels of free calcium ions (Ca2+), reactive oxygen species (ROS) and reduced glutathione (GSH). No differences in parthenogenesis rates were found between treated and untreated groups. Ca2+ levels in oocytes from the hyaluronidase treatment group indicated using mean fluorescence intensity were significantly higher (68.8 ± 5.3) compared with in the control group (45.0 ± 2.5). No differences were found in the levels of ROS or GSH between the treated and untreated groups. We conclude that hyaluronidase might trigger an increase in Ca2+ levels in oocytes, resulting in a decreased potential for normal embryonic development.


Author(s):  
Dulama Richani ◽  
Robert B Gilchrist

Abstract Oocytes are maintained in a state of meiotic arrest following the first meiotic division until ovulation is triggered. Within the antral follicle, meiotic arrest is actively suppressed in a process facilitated by the cyclic nucleotides cGMP and cAMP. If removed from this inhibitory follicular environment and cultured in vitro, mammalian oocytes undergo spontaneous meiotic resumption in the absence of the usual stimulatory follicular stimuli, leading to asynchronicity with oocyte cytoplasmic maturation and lower developmental competence. For more than 50 years, pharmacological agents have been used to attenuate oocyte germinal vesicle (GV) breakdown in vitro. Agents which increase intra-oocyte cAMP or prevent its degradation have been predominantly used, however agents such as kinase and protein synthesis inhibitors have also been trialled. Twenty years of research demonstrates that maintaining GV arrest for a period before in vitro maturation (IVM) improves oocyte developmental competence, and is likely attributed to maintenance of bidirectional communication with cumulus cells leading to improved oocyte metabolic function. However, outcomes are influenced by various factors including the mode of action of the modulators, dose, treatment duration, species, and the degree of hormonal priming of the oocyte donor. Cyclic GMP and/or cAMP modulation in a prematuration step (called pre-IVM) prior to IVM has shown the greatest consistency in improving oocyte developmental competence, whereas kinase and protein synthesis inhibitors have proven less effective at improving IVM outcomes. Such pre-IVM approaches have shown potential to alter current use of artificial reproductive technologies in medical and veterinary practice.


2021 ◽  
Vol 36 (Supplement_1) ◽  
Author(s):  
C D Berardino ◽  
N Bernabò ◽  
G Capacchietti ◽  
A Peserico ◽  
G Buoncuore ◽  
...  

Abstract Study question Considering the complexity of mechanisms involved in mammalian ovarian folliculogenesis, how about improving the current in-vitro folliculogenesis (ivF) protocols to prolong individual reproductive chance? Summary answer Computational modelling approach based on network theory was used to manage complexity, improve ivF knowledge and discover new molecules to be targeted for innovating assisted-reproductive-technologies. What is known already: Over the past decades, based on the large ovarian-pool of immature-gametes availability, ivF systems were developed in several mammalian species to support oocyte growth in order to preserve human-fertility and contrast endangered species extinction. Only mouse live-births were obtained when primordial/primary follicles were cultured in-vitro, instead the oocyte differentiation is extremely slow in medium-sized mammals. Moreover, the degree of meiotic-competence is quite incomplete if compared to mice, because oocytes must proceed until late antral-follicle stage to acquire a complete developmental competence. These observations denote the importance to adopt further investigations for establishing a complete ivF protocol in translational mammal model. Study design, size, duration Two researchers expert on reproductive biology generated the Web of Science-Mammals-Made in-vitro folliculogenesis (WoS_MMivF) database including 1111 manuscripts published in peer-reviewed international papers indexed selected in Advanced Search of WoS “Core-collection” by carrying out an independent analysis. Two additional researchers verified the correctness of the records. Participants/materials, setting, methods WoS_MMivF network was built up using Cytoscape 2.6.3 software. The network was analyzed for topological parameters (closeness-centrality, betweenness-centrality and edge count) and to identify key controllers (Hub.BN). Bidimensional-kernel-density-estimation (2D KDE) identifies Hub.BN controllers; Search-Tool-for-the-Retrieval-of-Interacting-Genes/Proteins (STRING) were used to enrich the network with new proteins. Main results and the role of chance The analysis of topological parameters demonstrated that the network is scale-free according to Barabási-Albert-model with a high-degree of robustness-against-random-damage, great controllability and navigability. The network reproduces a coherent framework identifying cross-talking molecules playing a key role in the inter-follicular/intra (somatic and germinal compartment) dialogue. The network allows to organize signalling transduction events/molecules by stratifying them in three layers: input-layer recognizes molecules generating the information flux working as systemic endocrine (pituitary/chorion/enteric-related endocrine hormones) and local paracrine-factors (TGFbeta-superfamily-members and growth-factors) exerting either intrafollicular control or remote feedback on reproductive-cycle. Processing-layer presents molecules able to elaborate/amplify the endocrine/paracrine controllers of ovarian functions, including components of codified intracellular-signaling-pathways like PI3K, KIT and MAPK and second messengers cAMP and Ca2+. These cascades are necessary to promote in-vitro reproducible follicular functions and modulate steroidogenesis, representing molecular events stratified in the output-layer. STRING analysis allowed to extend the regulatory flow of information towards two major biological action contexts: metabolic-control (paracrine-factors and signal-transduction) and angiogenesis. Metabolic-control mediated by mTOR and its interactor cognates FOXO1, FOXO3/SIRT1 plays a key role for ivF, representing the energy sensors of the reproductive cells in hypothalamic-pituitary-ovarian-axis first regulating the status of follicle quiescence/activation and then fate of the structure (specialization or apoptosis). Limitations, reasons for caution - Wider implications of the findings: STRING identified mTOR as key pathway of folliculogenesis, which might act as a molecular-switch to be pharmacologically targeted for potential new in-vitro strategies modulating follicular fate. These results suggest that computational approach in biology might offer perspective in identifying unknown signals, implementing research questions and innovative protocols to face female-fertility. Trial registration number Not applicable


2007 ◽  
Vol 19 (1) ◽  
pp. 239 ◽  
Author(s):  
R. Krisher ◽  
A. Auer ◽  
K. Clark ◽  
K. Emsweller ◽  
S. Rogers ◽  
...  

The objective of this experiment was to develop in vitro embryo production (IVP) technologies in springbok (Antidorcas marsupialis), a southern African antelope. Springbok, a fairly common species on game farms in parts of South Africa, may be used as a model species for gamete rescue and IVP techniques to be applied to the conservation of other threatened antelope species. Springbok belong to the family bovidae, subfamily antilopinae, tribe antilopini, which comprises about twenty species in genera Gazella, Antilope, Procapra, Antidorcas, Litocranius, and Ammodorcas. In this tribe alone, there are 4 species or subspecies that are critically endangered, 3 that are endangered, and 10 that are considered vulnerable, demonstrating the need for antelope conservation efforts. In addition, our studies contributed to the South African biological resource bank, so that banked springbok semen and embryos might be used in the future for managed genetic contribution to isolated captive or wild populations via assisted reproductive technologies. Oocytes were recovered (3 replicates) from ovaries obtained at supervised culls for management purposes in South Africa, and cultured in defined Gmat or undefined TCM-199 with FCS maturation medium for 28-30 h (Brad et al. 2004 Reprod. Fertil. Dev. 16, 223). Oocytes were fertilized with frozen-thawed springbok epididymal spermatozoa in modified SOF fertilization medium with caffeine (Herrick et al. 2004 Biol. Reprod. 71, 948–958). Eighteen hours after insemination, a randomly selected subset of the zygotes were fixed to determine fertilization success. The remaining zygotes were cultured in G1/G2 media. On Day 7 of culture, embryos were analyzed for development to the morula or blastocyst stage. A total of 259 selected oocytes were collected from 50 females (5.2 selected oocytes/female on average). There was no difference in the percentage of oocytes normally fertilized (2 pronuclei, PN) between oocytes matured in Gmat (n= 43; 12%) and those matured in TCM-199 (n= 42; 10%). There were significantly (P &lt; 0.05) more oocytes penetrated (e2 PN) when matured in TCM (50%) compared to Gmat (23%). There were no differences in embryonic cleavage or morula/blastocyst development (of total oocytes inseminated) between treatments (Gmat,n= 89, 54%, 9.0%; TCM-199, n= 85, 68%, 9.4%, respectively). In both treatments, the average blastocyst grade was 2.125 using the standard bovine grading system (Curtis, Cattle Embryo Transfer Procedure, 1991). In conclusion, in vitro oocyte maturation, fertilization, and embryo culture to the blastocyst stage is possible in springbok. Importantly, blastocysts can be produced in vitro under semi-defined conditions, demonstrating that oocyte maturation without serum does support developmental competence. This is important for the potential international movement of IVP embryos to be used for genetic management in the conservation of antelope species.


Sign in / Sign up

Export Citation Format

Share Document