Targeting αGal epitopes for multi-species embryo immunosurgery

2019 ◽  
Vol 31 (4) ◽  
pp. 820
Author(s):  
Mayuko Kurome ◽  
Andrea Baehr ◽  
Kilian Simmet ◽  
Eva-Maria Jemiller ◽  
Stefanie Egerer ◽  
...  

Immunosurgical isolation of the inner cell mass (ICM) from blastocysts is based on complement-mediated lysis of antibody-coated trophectoderm (TE) cells. Conventionally, anti-species antisera, containing antibodies against multiple undefined TE-cell epitopes, have been used as the antibody source. We previously generated α-1,3-galactosyltransferase deficient (GTKO) pigs to prevent hyperacute rejection of pig-to-primate xenotransplants. Since GTKO pigs lack galactosyl-α-1,3-galactose (αGal) but are exposed to this antigen (e.g. αGal on gut bacteria), they produce anti-αGal antibodies. In this study, we examined whether serum from GTKO pigs could be used as a novel antibody source for multi-species embryo immunosurgery. Mouse, rabbit, pig and cattle blastocysts were used for the experiment. Expression of αGal epitopes on the surface of TE cells was detected in blastocysts of all species tested. GTKO pig serum contained sufficient anti-αGal antibodies to induce complement-mediated lysis of TE cells in blastocysts from all species investigated. Intact ICMs could be successfully recovered and the majority showed the desired level of purity. Our study demonstrates that GTKO pig serum is a reliable and effective source of antibodies targeting the αGal epitopes of TE cells for multi-species embryo immunosurgery.

2018 ◽  
Vol 30 (1) ◽  
pp. 241
Author(s):  
M. Kurome ◽  
A. Baehr ◽  
K. Simmet ◽  
B. Kessler ◽  
E. Jemiller ◽  
...  

Immunosurgical isolation of the inner cell mass (ICM) from blastocysts is based on complement-mediated lysis of antibody-coated trophectoderm (TE) cells. Conventionally, anti-species antisera, containing antibodies against multiple undefined TE cell epitopes, have been used as antibody source. We previously generated α-1,3-galactosyltransferase deficient (GTKO) pigs to prevent hyper-acute rejection of pig-to-primate xenotransplants. Because GTKO pigs lack galactosyl-α-1,3-galactose (αGal) but are exposed to this antigen (e.g. αGal on gut bacteria), they are expected to produce anti-αGal antibodies. In this study, we examined whether serum from GTKO pigs can be used as a novel antibody source for embryo immunosurgery. First, the presence of αGal epitopes in mouse (E3.5), rabbit (Day 4), pig (Day 6–7), and bovine (Day 7–8) blastocysts was examined by staining with fluorescein isothiocyanate (FITC)-conjugated BSI-B4 lectin (Sigma, St. Louis, MO, USA) that binds αGal. Expression of αGal epitopes on the surface of TE cells was detected in blastocysts of all examined species. Next, pig blastocysts were incubated with a medium containing GTKO pig serum. Swollen TE cells were observed in some of the blastocysts already after 2 min and, after 10 min, almost all TE cells of these blastocysts were completely destroyed. No lysis was recorded when the same experiment was done with wild-type pig serum, suggesting the presence of sufficient quantities of anti-αGal antibodies in GTKO serum to coat the TE cells and induce their complement-mediated lysis. Finally, GTKO serum was systematically tested for immunosurgery. Zona-free blastocysts of the species mentioned above were incubated with heat-inactivated GTKO pig serum for 1 h at 38°C. After washing, the blastocysts were labelled with Hoechst 33342 and TE was stained with FITC-conjugated concanavalin A (ConA) to distinguish the ICM from TE cells. Eventually, the blastocysts were individually incubated in complement solution for 30 to 40 min. Complement-mediated lysis of TE cells was efficiently induced in mouse, rabbit, pig, and bovine blastocysts (10/10, 7/7, 10/10, and 5/6, respectively), and intact ICM were successfully recovered from all species (100, 100, 60, and 80%, respectively). Double fluorescent staining with Hoechst 33342 and ConA clearly showed that the majority of isolated ICM was not contaminated with TE cells. Our study demonstrates that GTKO pig serum is a reliable source of antibodies targeting the αGal epitope of TE cells. Major advantages of using GTKO serum for embryo immunosurgery are (1) that it can be produced easily in large batches, thus reducing experimental variation; and (2) that it reacts with a large number of different species, except for humans, apes, and old world monkeys that lack αGal epitopes. Interesting applications include the preparation of TE and ICM for transcriptome profiling or chimeric embryo complementation experiments. This work is supported by the German Research Council (TR-CRC 127).


Author(s):  
Marc Lenburg ◽  
Rulang Jiang ◽  
Lengya Cheng ◽  
Laura Grabel

We are interested in defining the cell-cell and cell-matrix interactions that help direct the differentiation of extraembryonic endoderm in the peri-implantation mouse embryo. At the blastocyst stage the mouse embryo consists of an outer layer of trophectoderm surrounding the fluid-filled blastocoel cavity and an eccentrically located inner cell mass. On the free surface of the inner cell mass, facing the blastocoel cavity, a layer of primitive endoderm forms. Primitive endoderm then generates two distinct cell types; parietal endoderm (PE) which migrates along the inner surface of the trophectoderm and secretes large amounts of basement membrane components as well as tissue-type plasminogen activator (tPA), and visceral endoderm (VE), a columnar epithelial layer characterized by tight junctions, microvilli, and the synthesis and secretion of α-fetoprotein. As these events occur after implantation, we have turned to the F9 teratocarcinoma system as an in vitro model for examining the differentiation of these cell types. When F9 cells are treated in monolayer with retinoic acid plus cyclic-AMP, they differentiate into PE. In contrast, when F9 cells are treated in suspension with retinoic acid, they form embryoid bodies (EBs) which consist of an outer layer of VE and an inner core of undifferentiated stem cells. In addition, we have established that when VE containing embryoid bodies are plated on a fibronectin coated substrate, PE migrates onto the matrix and this interaction is inhibited by RGDS as well as antibodies directed against the β1 integrin subunit. This transition is accompanied by a significant increase in the level of tPA in the PE cells. Thus, the outgrowth system provides a spatially appropriate model for studying the differentiation and migration of PE from a VE precursor.


Diabetes ◽  
1990 ◽  
Vol 39 (4) ◽  
pp. 471-476 ◽  
Author(s):  
S. Pampfer ◽  
R. de Hertogh ◽  
I. Vanderheyden ◽  
B. Michiels ◽  
M. Vercheval

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Marino Maemura ◽  
Hiroaki Taketsuru ◽  
Yuki Nakajima ◽  
Ruiqi Shao ◽  
Ayaka Kakihara ◽  
...  

AbstractIn multicellular organisms, oocytes and sperm undergo fusion during fertilization and the resulting zygote gives rise to a new individual. The ability of zygotes to produce a fully formed individual from a single cell when placed in a supportive environment is known as totipotency. Given that totipotent cells are the source of all multicellular organisms, a better understanding of totipotency may have a wide-ranging impact on biology. The precise delineation of totipotent cells in mammals has remained elusive, however, although zygotes and single blastomeres of embryos at the two-cell stage have been thought to be the only totipotent cells in mice. We now show that a single blastomere of two- or four-cell mouse embryos can give rise to a fertile adult when placed in a uterus, even though blastomere isolation disturbs the transcriptome of derived embryos. Single blastomeres isolated from embryos at the eight-cell or morula stages and cultured in vitro manifested pronounced defects in the formation of epiblast and primitive endoderm by the inner cell mass and in the development of blastocysts, respectively. Our results thus indicate that totipotency of mouse zygotes extends to single blastomeres of embryos at the four-cell stage.


2021 ◽  
Author(s):  
Chuan Chen ◽  
Wenqiang Liu ◽  
Jiayin Guo ◽  
Yuanyuan Liu ◽  
Xuelian Liu ◽  
...  

AbstractN6-methyladenosine (m6A) on chromosome-associated regulatory RNAs (carRNAs), including repeat RNAs, plays important roles in tuning the chromatin state and transcription, but the intrinsic mechanism remains unclear. Here, we report that YTHDC1 plays indispensable roles in the self-renewal and differentiation potency of mouse embryonic stem cells (ESCs), which highly depends on the m6A-binding ability. Ythdc1 is required for sufficient rRNA synthesis and repression of the 2-cell (2C) transcriptional program in ESCs, which recapitulates the transcriptome regulation by the LINE1 scaffold. Detailed analyses revealed that YTHDC1 recognizes m6A on LINE1 RNAs in the nucleus and regulates the formation of the LINE1-NCL partnership and the chromatin recruitment of KAP1. Moreover, the establishment of H3K9me3 on 2C-related retrotransposons is interrupted in Ythdc1-depleted ESCs and inner cell mass (ICM) cells, which consequently increases the transcriptional activities. Our study reveals a role of m6A in regulating the RNA scaffold, providing a new model for the RNA-chromatin cross-talk.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Lydia K. Wooldridge ◽  
Alan D. Ealy

Abstract Background Interleukin-6 (IL6) was recently identified as an embryotrophic factor in bovine embryos, where it acts primarily to mediate inner cell mass (ICM) size. This work explored whether IL6 affects epiblast (EPI) and primitive endoderm (PE) development, the two embryonic lineages generated from the ICM after its formation. Nuclear markers for EPI (NANOG) and PE (GATA6) were used to differentiate the two cell types. Results Increases (P < 0.05) in total ICM cell numbers and PE cell numbers were detected in bovine blastocysts at day 8 and 9 post-fertilization after exposure to 100 ng/ml recombinant bovine IL6. Also, IL6 increased (P < 0.05) the number of undifferentiated ICM cells (cells containing both PE and EPI markers). The effects of IL6 on EPI cell numbers were inconsistent. Studies were also completed to explore the importance of Janus kinase 2 (JAK2)-dependent signaling in bovine PE cells. Definitive activation of STAT3, a downstream target for JAK2, was observed in PE cells. Also, pharmacological inhibition of JAK2 decreased (P < 0.05) PE cell numbers. Conclusions To conclude, IL6 manipulates ICM development after EPI/PE cell fates are established. The PE cells are the target for IL6, where a JAK-dependent signal is used to regulate PE numbers.


Sign in / Sign up

Export Citation Format

Share Document