scholarly journals Interleukin-6 promotes primitive endoderm development in bovine blastocysts

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Lydia K. Wooldridge ◽  
Alan D. Ealy

Abstract Background Interleukin-6 (IL6) was recently identified as an embryotrophic factor in bovine embryos, where it acts primarily to mediate inner cell mass (ICM) size. This work explored whether IL6 affects epiblast (EPI) and primitive endoderm (PE) development, the two embryonic lineages generated from the ICM after its formation. Nuclear markers for EPI (NANOG) and PE (GATA6) were used to differentiate the two cell types. Results Increases (P < 0.05) in total ICM cell numbers and PE cell numbers were detected in bovine blastocysts at day 8 and 9 post-fertilization after exposure to 100 ng/ml recombinant bovine IL6. Also, IL6 increased (P < 0.05) the number of undifferentiated ICM cells (cells containing both PE and EPI markers). The effects of IL6 on EPI cell numbers were inconsistent. Studies were also completed to explore the importance of Janus kinase 2 (JAK2)-dependent signaling in bovine PE cells. Definitive activation of STAT3, a downstream target for JAK2, was observed in PE cells. Also, pharmacological inhibition of JAK2 decreased (P < 0.05) PE cell numbers. Conclusions To conclude, IL6 manipulates ICM development after EPI/PE cell fates are established. The PE cells are the target for IL6, where a JAK-dependent signal is used to regulate PE numbers.

2020 ◽  
Author(s):  
Lydia K. Wooldridge ◽  
Alan D. Ealy

Abstract Background: Interleukin-6 (IL6) was recently identified as an embryotrophic factor in bovine embryos, where it acts primarily to mediate inner cell mass (ICM) size. This work explored whether IL6 affects epiblast (EPI) and primitive endoderm (PE) development, the two embryonic lineages generated from the ICM after its formation. Nuclear markers for EPI (NANOG) and PE (GATA6) were used to differentiate the two cell types. Results: Increases (P<0.05) in total ICM cell numbers and PE cell numbers were detected in bovine blastocysts at day 8 and 9 post-fertilization after exposure to 100 ng/ml recombinant bovine IL6. Also, IL6 increased (P<0.05) the number of undifferentiated ICM cells (cells containing both PE and EPI markers). The effects of IL6 on EPI cell numbers were inconsistent. Studies were also completed to explore the importance of Janus kinase 2 (JAK2)-dependent signaling in bovine PE cells. Definitive activation of STAT3, a downstream target for JAK2, was observed in PE cells. Also, pharmacological inhibition of JAK2 decreased (P<0.05) PE cell numbers. Conclusions: To conclude, IL6 manipulates ICM development after EPI/PE cell fates are established. The PE cells are the target for IL6, where a JAK-dependent signal is used to regulate PE numbers.


2020 ◽  
Author(s):  
Lydia K. Wooldridge ◽  
Alan Ealy

Abstract Background: Interleukin-6 (IL6) was recently identified as an embryotrophic factor in bovine embryos, where it acts primarily to mediate inner cell mass (ICM) size. This work explored whether IL6 affects epiblast (EPI) and primitive endoderm (PE) development, the two embryonic lineages generated from the ICM after its formation. Nuclear markers for EPI (NANOG) and PE (GATA6) were used to differentiate the two cell types. Results: Increases (P<0.05) in total ICM cell numbers and PE cell numbers were detected in bovine blastocysts at day 8 and 9 post-fertilization after exposure to 100 ng/ml recombinant bovine IL6. Also, IL6 increased (P<0.05) the number of undifferentiated ICM cells (cells containing both PE and EPI markers). The effects of IL6 on EPI cell numbers were inconsistent. Studies were also completed to explore the importance of Janus kinase 2 (JAK2)-dependent signaling in bovine PE cells. Definitive activation of STAT3, a downstream target for JAK2, was observed in PE cells. Also, pharmacological inhibition of JAK2 decreased (P<0.05) PE cell numbers. Conclusions: To conclude, IL6 manipulates ICM development after EPI/PE cell fates are established. The PE cells are the target for IL6, where a JAK-dependent signal is used to regulate PE numbers.


Reproduction ◽  
2019 ◽  
Vol 158 (4) ◽  
pp. 303-312 ◽  
Author(s):  
Lydia K Wooldridge ◽  
Sally E Johnson ◽  
Rebecca R Cockrum ◽  
Alan D Ealy

Supplementing interleukin-6 (IL6) to in vitro-produced bovine embryos increases inner cell mass (ICM) cell numbers in blastocysts. A series of studies were completed to further dissect this effect. Treatment with IL6 increased ICM cell numbers in early, regular and expanded blastocysts but had no effect on morulae total cell number. Treatment with IL6 for 30 min induced signal transducer and activator of transcription 3 (STAT3) phosphorylation and nuclear translocation in all blastomeres in early morulae and specifically within the ICM in blastocysts. Also, IL6 supplementation increased SOCS3 mRNA abundance, a STAT3-responsive gene, in blastocysts. Chemical inhibition of Janus kinase (JAK) activity from day 5 to day 8 prevented STAT3 activation and the IL6-induced ICM cell number increase. Global transcriptome analysis of blastocysts found that transcripts for IL6 and its receptor subunits (IL6R and IL6ST) were the most abundantly expressed IL6 family ligand and receptors. These results indicate that IL6 increases ICM cell numbers as the ICM lineage emerges at the early blastocyst stage through a STAT3-dependent mechanism. Also, IL6 appears to be the primary IL6 cytokine family member utilized by bovine blastocysts to control ICM cell numbers.


Development ◽  
2021 ◽  
Author(s):  
Esther Jeong Yoon Kim ◽  
Lydia Sorokin ◽  
Takashi Hiiragi

Development entails patterned emergence of diverse cell types within the embryo. In mammals, cells positioned inside the embryo give rise to the inner cell mass (ICM) that eventually forms the embryo proper. Yet the molecular basis of how these cells recognise their ‘inside’ position to instruct their fate is unknown. Here we show that provision of extracellular matrix (ECM) to isolated embryonic cells induces ICM specification and alters subsequent spatial arrangement between epiblast (EPI) and primitive endoderm (PrE) cells that emerge within the ICM. Notably, this effect is dependent on integrin β1 activity and involves apical to basal conversion of cell polarity. We demonstrate that ECM-integrin activity is sufficient for ‘inside’ positional signalling and it is required for proper EPI/PrE patterning. Our findings thus highlight the significance of ECM-integrin adhesion in enabling position-sensing by cells to achieve tissue patterning.


2021 ◽  
Vol 2 ◽  
Author(s):  
Lydia K. Wooldridge ◽  
Alan D. Ealy

Previous work determined that bovine interleukin-6 (IL6) increases inner cell mass (ICM), primitive endoderm (PE), and total cell number in in vitro produced (IVP) bovine blastocysts. Another IL6 family member, leukemia inhibitory factor (LIF), has the potential to produce the same effects of IL6 due to the presence of its receptor in bovine blastocysts. We compared the abilities of LIF and IL6 to increase ICM cell numbers in day 7, 8, and 9 IVP bovine blastocysts. Supplementation with 100 ng/ml LIF from day 5 onward improved blastocyst formation rates on days 7 and 8 similar to what was observed when supplementing 100 ng/ml IL6. However, LIF supplementation did not cause an increase in ICM numbers like was observed after supplementing IL6. On day 9, increases in PE cell numbers were detected after LIF supplementation, but 300 ng/ml LIF was required to achieve the same effect on PE numbers that was observed by providing 100 ng/ml IL6. Collectively, these results show that LIF can mimic at least some of the effects of IL6 in bovine blastocyst.


2021 ◽  
Author(s):  
Lydia K. Wooldridge ◽  
Alan D. Ealy

Abstract Previous work determined that bovine interleukin-6 (IL6) increases inner cell mass (ICM), primitive endoderm (PE) and total cell number in in vitro produced (IVP) bovine blastocysts. Another IL6 family member, leukemia inhibitory factor (LIF), has the potential to produce the same effects of IL6 due to the presence of its receptor in bovine blastocysts. We compared the abilities of LIF and IL6 to increase ICM cell numbers in day 7, 8 and 9 IVP bovine blastocysts. Supplementation with 100 ng/ml LIF from day 5 onward improved blastocyst formation rates on days 7 and 8 similar to what was observed when supplementing 100 ng/ml IL6. However, LIF supplementation did not cause an increase in ICM numbers like was observed after supplementing IL6. On day 9, increases in PE cell numbers were detected after LIF supplementation, but 300 ng/ml LIF was required to achieve the same effect on PE numbers that was observed by providing 100 ng/ml IL6. Collectively, these results show that LIF can mimic at least some of the effects of IL6 in bovine blastocyst.


2021 ◽  
Author(s):  
Esther J.Y. Kim ◽  
Lydia Sorokin ◽  
Takashi Hiiragi

Development entails patterned emergence of diverse cell types within the embryo. In mammals, cells positioned inside the embryo gives rise to the inner cell mass (ICM) that eventually forms the embryo proper. Yet the molecular basis of how these cells recognise their inside position to instruct their fate is unknown. Here we show that cells perceive their position through extracellular matrix (ECM) and integrin-mediated adhesion. Provision of ECM to isolated embryonic cells induces ICM specification and alters subsequent spatial arrangement between epiblast (EPI) and primitive endoderm (PrE) cells that emerge within the ICM. Notably, this effect is dependent on integrin β 1 activity and involves apical to basal conversion of cell polarity. We demonstrate that ECM-integrin activity is sufficient for inside positional signalling and it is required for proper sorting of EPI/PrE cells. Our findings thus highlight the significance of ECM-integrin adhesion in enabling position-sensing by cells to achieve tissue patterning.


Author(s):  
Marc Lenburg ◽  
Rulang Jiang ◽  
Lengya Cheng ◽  
Laura Grabel

We are interested in defining the cell-cell and cell-matrix interactions that help direct the differentiation of extraembryonic endoderm in the peri-implantation mouse embryo. At the blastocyst stage the mouse embryo consists of an outer layer of trophectoderm surrounding the fluid-filled blastocoel cavity and an eccentrically located inner cell mass. On the free surface of the inner cell mass, facing the blastocoel cavity, a layer of primitive endoderm forms. Primitive endoderm then generates two distinct cell types; parietal endoderm (PE) which migrates along the inner surface of the trophectoderm and secretes large amounts of basement membrane components as well as tissue-type plasminogen activator (tPA), and visceral endoderm (VE), a columnar epithelial layer characterized by tight junctions, microvilli, and the synthesis and secretion of α-fetoprotein. As these events occur after implantation, we have turned to the F9 teratocarcinoma system as an in vitro model for examining the differentiation of these cell types. When F9 cells are treated in monolayer with retinoic acid plus cyclic-AMP, they differentiate into PE. In contrast, when F9 cells are treated in suspension with retinoic acid, they form embryoid bodies (EBs) which consist of an outer layer of VE and an inner core of undifferentiated stem cells. In addition, we have established that when VE containing embryoid bodies are plated on a fibronectin coated substrate, PE migrates onto the matrix and this interaction is inhibited by RGDS as well as antibodies directed against the β1 integrin subunit. This transition is accompanied by a significant increase in the level of tPA in the PE cells. Thus, the outgrowth system provides a spatially appropriate model for studying the differentiation and migration of PE from a VE precursor.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Marino Maemura ◽  
Hiroaki Taketsuru ◽  
Yuki Nakajima ◽  
Ruiqi Shao ◽  
Ayaka Kakihara ◽  
...  

AbstractIn multicellular organisms, oocytes and sperm undergo fusion during fertilization and the resulting zygote gives rise to a new individual. The ability of zygotes to produce a fully formed individual from a single cell when placed in a supportive environment is known as totipotency. Given that totipotent cells are the source of all multicellular organisms, a better understanding of totipotency may have a wide-ranging impact on biology. The precise delineation of totipotent cells in mammals has remained elusive, however, although zygotes and single blastomeres of embryos at the two-cell stage have been thought to be the only totipotent cells in mice. We now show that a single blastomere of two- or four-cell mouse embryos can give rise to a fertile adult when placed in a uterus, even though blastomere isolation disturbs the transcriptome of derived embryos. Single blastomeres isolated from embryos at the eight-cell or morula stages and cultured in vitro manifested pronounced defects in the formation of epiblast and primitive endoderm by the inner cell mass and in the development of blastocysts, respectively. Our results thus indicate that totipotency of mouse zygotes extends to single blastomeres of embryos at the four-cell stage.


Development ◽  
1993 ◽  
Vol 118 (4) ◽  
pp. 1353-1361
Author(s):  
J.M. Baltz ◽  
J.D. Biggers ◽  
C. Lechene

Most cell types are relatively impermeant to H+ and are able to regulate their intracellular pH by means of plasma membrane proteins, which transport H+ or bicarbonate across the membrane in response to perturbations of intracellular pH. Mouse preimplantation embryos at the 2-cell stage, however, do not appear to possess specific pH-regulatory mechanisms for relieving acidosis. They are, instead, highly permeable to H+, so that the intracellular pH in the acid and neutral range is determined by the electrochemical equilibrium of H+ across the plasma membrane. When intracellular pH is perturbed, the rate of the ensuing H+ flux across the plasma membrane is determined by the H+ electrochemical gradient: its dependence on external K+ concentration indicates probable dependence on membrane potential and the rate depends on the H+ concentration gradient across the membrane. The large permeability at the 2-cell stage is absent or greatly diminished in the trophectoderm of blastocysts, but still present in the inner cell mass. Thus, the permeability to H+ appears to be developmentally regulated.


Sign in / Sign up

Export Citation Format

Share Document