202 Targeting Galactosyl-α-1,3-Galactose (αGal) Epitopes for Multi-Species Embryo Immunosurgery

2018 ◽  
Vol 30 (1) ◽  
pp. 241
Author(s):  
M. Kurome ◽  
A. Baehr ◽  
K. Simmet ◽  
B. Kessler ◽  
E. Jemiller ◽  
...  

Immunosurgical isolation of the inner cell mass (ICM) from blastocysts is based on complement-mediated lysis of antibody-coated trophectoderm (TE) cells. Conventionally, anti-species antisera, containing antibodies against multiple undefined TE cell epitopes, have been used as antibody source. We previously generated α-1,3-galactosyltransferase deficient (GTKO) pigs to prevent hyper-acute rejection of pig-to-primate xenotransplants. Because GTKO pigs lack galactosyl-α-1,3-galactose (αGal) but are exposed to this antigen (e.g. αGal on gut bacteria), they are expected to produce anti-αGal antibodies. In this study, we examined whether serum from GTKO pigs can be used as a novel antibody source for embryo immunosurgery. First, the presence of αGal epitopes in mouse (E3.5), rabbit (Day 4), pig (Day 6–7), and bovine (Day 7–8) blastocysts was examined by staining with fluorescein isothiocyanate (FITC)-conjugated BSI-B4 lectin (Sigma, St. Louis, MO, USA) that binds αGal. Expression of αGal epitopes on the surface of TE cells was detected in blastocysts of all examined species. Next, pig blastocysts were incubated with a medium containing GTKO pig serum. Swollen TE cells were observed in some of the blastocysts already after 2 min and, after 10 min, almost all TE cells of these blastocysts were completely destroyed. No lysis was recorded when the same experiment was done with wild-type pig serum, suggesting the presence of sufficient quantities of anti-αGal antibodies in GTKO serum to coat the TE cells and induce their complement-mediated lysis. Finally, GTKO serum was systematically tested for immunosurgery. Zona-free blastocysts of the species mentioned above were incubated with heat-inactivated GTKO pig serum for 1 h at 38°C. After washing, the blastocysts were labelled with Hoechst 33342 and TE was stained with FITC-conjugated concanavalin A (ConA) to distinguish the ICM from TE cells. Eventually, the blastocysts were individually incubated in complement solution for 30 to 40 min. Complement-mediated lysis of TE cells was efficiently induced in mouse, rabbit, pig, and bovine blastocysts (10/10, 7/7, 10/10, and 5/6, respectively), and intact ICM were successfully recovered from all species (100, 100, 60, and 80%, respectively). Double fluorescent staining with Hoechst 33342 and ConA clearly showed that the majority of isolated ICM was not contaminated with TE cells. Our study demonstrates that GTKO pig serum is a reliable source of antibodies targeting the αGal epitope of TE cells. Major advantages of using GTKO serum for embryo immunosurgery are (1) that it can be produced easily in large batches, thus reducing experimental variation; and (2) that it reacts with a large number of different species, except for humans, apes, and old world monkeys that lack αGal epitopes. Interesting applications include the preparation of TE and ICM for transcriptome profiling or chimeric embryo complementation experiments. This work is supported by the German Research Council (TR-CRC 127).

Development ◽  
1985 ◽  
Vol 90 (1) ◽  
pp. 267-285
Author(s):  
Sheila C. Barton ◽  
Catharine A. Adams ◽  
M. L. Norris ◽  
M. A. H. Surani

The developmental potential of inner cell mass (ICM) and trophectoderm (TE) derived from parthenogenetic or biparental gynogenetic embryos was examined in reconstituted blastocysts with normal TE or ICM, respectively. The results demonstrate that when a normal ICM was introduced inside a trophectoderm vesicle derived from parthenogenetic or gynogenetic blastocysts, postimplantation development was characterized by the almost complete failure of trophoblast proliferation and without compensating cellular contribution from the normal ICM to the outer trophoblast lineage. Consequently, the normal ICMs also failed to develop adequately and only a few retarded embryos were detected on day 11–12 of pregnancy. In most respects, development of these reconstituted blastocysts resembled that obtained with unoperated gynogenetic and a parthenogenetic blastocyst. By contrast, an ICM from a parthenogenetic or gynogenetic embryo introduced inside a normal trophectoderm vesicle induced substantial proliferation of the trophoblast but again without a detectable cellular contribution from the ICM to the outer trophoblast lineage. However, with the improved development of the trophoblast, both the parthenogenetic and gynogenetic ICMs developed substantially better and without a detectable cellular contribution from the TE to the embryo. Almost all the embryos developed at least up to the 25-somite stage and many of them reached the 30- to 40-somite stage. Some of the most advanced day-11 and -12 gynogenones and parthenogenones yet seen have now been obtained in this way. Nevertheless, all the embryos were still smaller than the equivalent control embryos and showed signs of some tissue degeneration. The yolk sac was also suboptimal with poor blood supply and may need to be improved to obtain further improvement in the development of the embryos. The combined results demonstrate that the trophoblast proliferates very poorly even in the presence of a normal ICM, if the TE tissue lacks a paternal genome. However, ICM tissues which lack a paternal genome can develop to an advanced embryonic stage if they are introduced inside a normal trophectoderm vesicle. The results give further insight into the differential roles of maternal and paternal genomes during development of the embryo and extraembryonic tissues in the mouse.


2011 ◽  
Vol 23 (1) ◽  
pp. 174
Author(s):  
M. Ozawa ◽  
P. J. Hansen

The first distinct lineage differentiation in the mammalian embryo occurs at the blastocyst stage when blastomeres are segregated into inner cell mass (ICM) or trophectoderm (TE). Obtaining purified TE or ICM can be useful for understanding regulation of early development and differentiation. Although several methods have been reported to separate TE and ICM (e.g. immunosurgery, mechanical dissection using a micromanipulator, or manual selection following trypsinization), limitations exist with these methods. Here, we describe a simple and effective method to sort cells of the blastocyst using magnetic activated cell sorting (MACS) following disaggregation of the blastocyst into single cells using trypsin. Bovine blastocysts were produced in vitro and the zona pellucida removed with a short exposure to acidic Tyrode’s solution. Zona-free blastocysts were incubated with concanavalin A conjugated to fluorescein isothiocyanate (FITC) to label the outer layer of the blastocyst. The blastocysts were then exposed to Hoechst 33342 to label nuclei of all blastomeres. The blastocysts were treated with 0.05% (wt/vol) trypsin, and then disaggregated into single blastomeres by repeating pipetting using a finely drawn, flame-polished mouth micropipette. Single blastomeres were incubated with magnetic microbeads conjugated to anti-FITC and subjected to MACS separation. A fraction of sorted cells was observed under a fluorescence microscope. The remainder were subjected to mRNA extraction, and NANOG (ICM marker) and CDX2 (TE marker) mRNA were quantified by quantitative PCR. After disaggregation of the blastocyst, 2 types of single blastomeres were observed: cells that were positive for both FITC and Hoechst 33342 (TE cells) and cells that were negative for FITC but positive for Hoechst 33342 (ICM cells). Before MACS, about two-thirds of the disaggregated blastomeres labelled with Hoechst 33342 were also labelled with FITC, while one-third were FITC negative. After MACS, the percent of dual-labelled cells in the FITC positive fraction was 91.2%, whereas the incidence of dual-labelled cells in the FITC negative fraction was only 7.8 ± 3.0%. A total of 11.5 μg of RNA per blastocyst was recovered from cells isolated by MACS. This represents 80% of the RNA present in intact blastocysts and suggests a high rate of recovery of blastomeres during the purification process. Furthermore, relative expression level of NANOG was lower in the FITC-positive fraction than in the FITC-negative fraction (0.30 ± 0.05 v. 3.1 ± 0.6, respectively, relative to gene expression level in whole blastocysts). Conversely, the relative expression level of CDX2 was higher in the FITC-positive fraction than in the FITC-negative fraction (3.2 ± 0.09 v. 0.30 ± 0.9, respectively). Results indicate that highly purified TE cells or ICM cells can be collected using MACS. This simple method can be used to study differentiation of the mammalian embryo as well as to prepare embryonic cells of specific lineages for cell therapy. Research was supported by Agriculture and Food Research Initiative Competitive Grant no. 2009-65203-05732 from the USDA NIFA.


2014 ◽  
Vol 90 (3) ◽  
Author(s):  
Khursheed Iqbal ◽  
James L. Chitwood ◽  
Geraldine A. Meyers-Brown ◽  
Janet F. Roser ◽  
Pablo J. Ross

2019 ◽  
Vol 31 (4) ◽  
pp. 820
Author(s):  
Mayuko Kurome ◽  
Andrea Baehr ◽  
Kilian Simmet ◽  
Eva-Maria Jemiller ◽  
Stefanie Egerer ◽  
...  

Immunosurgical isolation of the inner cell mass (ICM) from blastocysts is based on complement-mediated lysis of antibody-coated trophectoderm (TE) cells. Conventionally, anti-species antisera, containing antibodies against multiple undefined TE-cell epitopes, have been used as the antibody source. We previously generated α-1,3-galactosyltransferase deficient (GTKO) pigs to prevent hyperacute rejection of pig-to-primate xenotransplants. Since GTKO pigs lack galactosyl-α-1,3-galactose (αGal) but are exposed to this antigen (e.g. αGal on gut bacteria), they produce anti-αGal antibodies. In this study, we examined whether serum from GTKO pigs could be used as a novel antibody source for multi-species embryo immunosurgery. Mouse, rabbit, pig and cattle blastocysts were used for the experiment. Expression of αGal epitopes on the surface of TE cells was detected in blastocysts of all species tested. GTKO pig serum contained sufficient anti-αGal antibodies to induce complement-mediated lysis of TE cells in blastocysts from all species investigated. Intact ICMs could be successfully recovered and the majority showed the desired level of purity. Our study demonstrates that GTKO pig serum is a reliable and effective source of antibodies targeting the αGal epitopes of TE cells for multi-species embryo immunosurgery.


2015 ◽  
Vol 15 (1) ◽  
Author(s):  
S. M. Hosseini ◽  
I. Dufort ◽  
J. Caballero ◽  
F. Moulavi ◽  
H. R. Ghanaei ◽  
...  

Development ◽  
1990 ◽  
Vol 110 (3) ◽  
pp. 815-821 ◽  
Author(s):  
A. Nagy ◽  
E. Gocza ◽  
E.M. Diaz ◽  
V.R. Prideaux ◽  
E. Ivanyi ◽  
...  

The developmental potential of embryonic stem (ES) cells versus 3.5 day inner cell mass (ICM) was compared after aggregation with normal diploid embryos and with developmentally compromised tetraploid embryos. ES cells were capable of colonizing somatic tissues in diploid aggregation chimeras but less efficiently than ICMs of the same genotype. When ICM in equilibrium with tetraploid and ES in equilibrium with tetraploid chimeras were made, the newborns were almost all completely ICM- or ES-derived, as judged by GPI isozyme analysis, but tetraploid cells were found in the yolk sac endoderm and trophectoderm lineage. Investigation of ES contribution in 13.5 day ES in equilibrium with tetraploid chimeras by DNA in situ hybridization confirmed the complete tetraploid origin of the placenta (except the fetal blood and blood vessels) and the yolk sac endoderm. However, the yolk sac mesoderm, amnion and fetus contained only ES-derived cells. ES-derived newborns failed to survive after birth, although they had normal birthweight and anatomically they appeared normal. This phenomenon remains unexplained at the moment. The present results prove that ES cells are able to support complete fetal development, resulting in ES-derived newborns, and suggest a useful route for studying the development of genetically manipulated ES cells in all fetal lineages.


Author(s):  
Marc Lenburg ◽  
Rulang Jiang ◽  
Lengya Cheng ◽  
Laura Grabel

We are interested in defining the cell-cell and cell-matrix interactions that help direct the differentiation of extraembryonic endoderm in the peri-implantation mouse embryo. At the blastocyst stage the mouse embryo consists of an outer layer of trophectoderm surrounding the fluid-filled blastocoel cavity and an eccentrically located inner cell mass. On the free surface of the inner cell mass, facing the blastocoel cavity, a layer of primitive endoderm forms. Primitive endoderm then generates two distinct cell types; parietal endoderm (PE) which migrates along the inner surface of the trophectoderm and secretes large amounts of basement membrane components as well as tissue-type plasminogen activator (tPA), and visceral endoderm (VE), a columnar epithelial layer characterized by tight junctions, microvilli, and the synthesis and secretion of α-fetoprotein. As these events occur after implantation, we have turned to the F9 teratocarcinoma system as an in vitro model for examining the differentiation of these cell types. When F9 cells are treated in monolayer with retinoic acid plus cyclic-AMP, they differentiate into PE. In contrast, when F9 cells are treated in suspension with retinoic acid, they form embryoid bodies (EBs) which consist of an outer layer of VE and an inner core of undifferentiated stem cells. In addition, we have established that when VE containing embryoid bodies are plated on a fibronectin coated substrate, PE migrates onto the matrix and this interaction is inhibited by RGDS as well as antibodies directed against the β1 integrin subunit. This transition is accompanied by a significant increase in the level of tPA in the PE cells. Thus, the outgrowth system provides a spatially appropriate model for studying the differentiation and migration of PE from a VE precursor.


Diabetes ◽  
1990 ◽  
Vol 39 (4) ◽  
pp. 471-476 ◽  
Author(s):  
S. Pampfer ◽  
R. de Hertogh ◽  
I. Vanderheyden ◽  
B. Michiels ◽  
M. Vercheval

Sign in / Sign up

Export Citation Format

Share Document