scholarly journals Characterisation of bovine embryos following prolonged culture in embryonic stem cell medium containing leukaemia inhibitory factor

2019 ◽  
Vol 31 (6) ◽  
pp. 1157 ◽  
Author(s):  
Misa Hosoe ◽  
Tadashi Furusawa ◽  
Ken-Go Hayashi ◽  
Toru Takahashi ◽  
Yutaka Hashiyada ◽  
...  

In order to help elucidate the process of epiblast and trophoblast cell differentiation in bovine embryos invitro, we attempted to develop a suitable culture medium to allow extended embryo culture. Day 7 bovine blastocysts developed in conventional medium were cultured further in embryonic stem cell medium with or without leukaemia inhibitory factor (LIF) until Day 23. At Day 14, the expression of octamer-binding transcription factor 3/4 (OCT3/4) and VIMENTIN was significantly higher in embryos cultured with than without LIF, but embryonic disc formation was not observed. Although expression of SRY (sex determining region Y)-box 17 (SOX17) mRNA was significantly lower in Day 14 embryos cultured with and without LIF than in invivo embryos, hypoblast cells formed just inside the trophoblast cells of the invitro-cultured embryos. On Day 23, expression of placental lactogen (PL) and prolactin-related protein 1 (PRP1) was not affected by LIF in invitro-cultured embryos, levels of both genes were significantly lower in the invitro than invivo embryos. Similar to invivo embryos, binucleate cell clusters seen in Day 23invitro-cultured embryos were composed of PL-negative and -positive cells. These results suggest that our culture system partially reproduced the differentiation process of trophoblast cells invivo.

2015 ◽  
Vol 27 (1) ◽  
pp. 259
Author(s):  
T. Tharasanit ◽  
N. Tiptanavattana ◽  
P. Phakdeedindan ◽  
M. Techakumphu

Embryonic stem (ES) cells are pluripotent cells that can differentiate into all 3 germ layers, including endoderm, mesoderm, and ectoderm. Embryonic stem cells are generally divided into 2 types, naïve and primed-state, depending on their signaling pathways. Domestic cat is a useful animal model for the study of human diseases because many genetic and infectious diseases in the cat are analogous with similar aetiology to human diseases. The cat can also be used as a research model for reproductive physiology and conservation of wild felids. Until recently, information on establishment of feline ES cells is limited. The objectives of this study were to isolate cat ES cells from in vitro-produced blastocysts and to examine the effect of different concentrations of basic fibroblast growth factor (bFGF) on the expression of pluripotent genes. Inner cell masses (ICM) from cat blastocysts (n = 40, Day 7 after in vitro fertilization) that were matured, fertilized, and cultured entirely in vitro, were isolated by immunosurgery and plated on mitmycin-treated mouse embryonic fibroblasts. The ICM (n = 20) were then cultured in embryonic stem cell medium containing 1000 IU mL–1 of leukemia inhibitory factor (LIF) and different bFGF concentrations (0, 4, 10, and 20 ng mL–1). The ICM outgrowths at 7 days postplating were collected and analysed for expression of pluripotent genes (SOX-2, OCT-4, and NANOG). Results showed that transcription levels of all 3 pluripotent genes were higher in ICM outgrowths cultured in 20 ng mL–1 of bFGF compared with the lower concentrations. For isolation of ES cells, ICM (n = 20) were cultured in embryonic stem cell medium supplemented with 1000 IU mL–1 of LIF and 20 ng mL–1 of bFGF due to the results obtained from the above experiment. Established ES cells were characterised by detecting alkaline phosphatase (AP) activity and expression of ES markers (SOX-2, OCT-4, SSEA-4) at protein level, and karyotyped at passage 20 and 40. In vitro differentiation into embryoid bodies (EB) was induced by the hanging drop technique, and EB samples (n = 5 for each time point) were tested for the expression of TTR, AFP, T (Bracyury), NKX2.5, MAP-2, and NESTIN genes at 0, 7, and 14 days of culture. A total of 3 ES-like cell lines were established with a typical ES morphology, such as a well-defined colony, a large nucleus to cytoplasm ratio with 1 to 2 prominent nucleoli. The 3 ES-like cell lines were passaged up to 40 times with a normal diploid karyotype (n = 38). They were strongly positive for AP, SOX-2, OCT-4, and SSEA-4. Following EB culture, cell aggregation and cystic-like structure were observed. The EB samples also expressed all differentiation markers. This study reports that feline ES-like cell lines can be generated from in vitro-produced feline blastocysts. The ES cell lines can be repeatedly passaged indicating self-renewal ability, and gene expression of the EB demonstrates cellular differentiation into all 3 germ layers.


2014 ◽  
Vol 60 (1) ◽  
pp. 78-82 ◽  
Author(s):  
Masumi HIRABAYASHI ◽  
Teppei GOTO ◽  
Chihiro TAMURA ◽  
Makoto SANBO ◽  
Hiromasa HARA ◽  
...  

2019 ◽  
Vol 4 ◽  
pp. 88 ◽  
Author(s):  
Moyra Lawrence ◽  
Thorold W. Theunissen ◽  
Patrick Lombard ◽  
David J. Adams ◽  
José C. R. Silva

Background: NANOG is a homeodomain-containing transcription factor which forms one of the hubs in the pluripotency network and plays a key role in the reprogramming of somatic cells and epiblast stem cells to naïve pluripotency.  Studies have found that NANOG has many interacting partners and some of these were shown to play a role in its ability to mediate reprogramming. In this study, we set out to analyse the effect of NANOG interactors on the reprogramming process. Methods: Epiblast stem cells and somatic cells were reprogrammed to naïve pluripotency using MEK/ERK inhibitor PD0325901, GSK3β inhibitor CHIR99021 and Leukaemia Inhibitory Factor (together termed 2i Plus LIF). Zmym2 was knocked out using the CRISPR/Cas9 system or overexpressed using the PiggyBac system. Reprogramming was quantified after ZMYM2 deletion or overexpression, in diverse reprogramming systems. In addition, embryonic stem cell self renewal was quantified in differentiation assays after ZMYM2 removal or overexpression. Results: In this work, we identified ZMYM2/ZFP198, which physically associates with NANOG as a key negative regulator of NANOG-mediated reprogramming of both epiblast stem cells and somatic cells. In addition, ZMYM2 impairs the self renewal of embryonic stem cells and its overexpression promotes differentiation. Conclusions: We propose that ZMYM2 curtails NANOG’s actions during the reprogramming of both somatic cells and epiblast stem cells and impedes embryonic stem cell self renewal, promoting differentiation.


Stem Cells ◽  
2009 ◽  
Vol 27 (2) ◽  
pp. 383-389 ◽  
Author(s):  
Weifeng Yang ◽  
Wei Wei ◽  
Cheng Shi ◽  
Jinliang Zhu ◽  
Wenqin Ying ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document