scholarly journals 265EFFECT OF SPECIFIC GRAVITY OF CULTURE MEDIUM ON IN VITRO EMBRYO DEVELOPMENT IN BUFFALO

2004 ◽  
Vol 16 (2) ◽  
pp. 253
Author(s):  
D.S. Arathy ◽  
S. Ashis ◽  
G.T. Sharma ◽  
A.C. Majumdar ◽  
M.S. Chauhan

In buffalo the success rate of transferable quality embryo production through in vitro procedure is very low as compared to cattle. Sub optimal culture conditions and physical conditions such as specific gravity of the culture medium may lead to a reduced rate of transferable buffalo embryo production from the oocytes matured and fertilized in vitro (Palta & Chauhan,1998 Reprod. Fertil. Dev. 10, 379–391). This experiment was therefore conducted to find out the role of specific gravity of the IVC medium on the development rate of the buffalo embryos in vitro. Follicles of slaughter house ovaries were aspirated and the collected oocytes with cumulus-oocytes complexes (COCs) were cultured in TCM-199 medium supplemented with 10% fetal calf serum, 10% buffalo follicular fluid and 0.5μgmL−1 FSH in 5% CO2 incubator at 38.5°C. The matured oocytes were then inseminated with frozen-thawed buffalo semen suspended in BO medium. After 42h of post-inseminations the cleavage rates were evaluated. The 2–4 cell-cleaved eggs (Day 2 of post-insemination) were randomly divided and cultured for eight days in vitro in 1) modified synthetic fluid (mSOF)+0.8 %BSA (control), 2) mSOF+0.8 % BSA+gelatin (1mgmL−1) 3) mSOF+0.8% BSA+1mgmL−1 gelatin+10ngmL−1 epidermal growth factor (EGF). Supplementation of gelatin increased the specific gravity of the mSOF medium from 0.9658±0.009 to 1.0331±0.013 without any change in pH (7.4). The development of embryos to the 8–16 cell-stage on day 4 of in vitro culture were significantly higher (P<0.05) in mSOF+0.8% BSA+1mgmL−1 gelatin (81.8%; 27/33) than that in mSOF + 0.8% BSA (75.7%; 28/37) and mSOF+0.8% BSA+10ng/mL EGF (68.7%; 22/32). When these embryos were further cultured for another four days (Day 8), the development of transferable quality embryos (morula/blastocyst) was 42.4% (14/33), 48.7% (18/37) and 46.9% (15/32), respectively. Supplementation of gelatin increased the cleavage of eggs up to the 8–16 cell-stage embryo, but did not significantly enhance the rate of development to the morula/blastocyst stage in comparison to control and EGF-supplemented group. However, the percentage of transferable quality embryos was slightly lower in the gelatin-added group but not statistically significant than other groups. The study concluded that increase in specific gravity of the in vitro culture medium enhanced initial cleavage rate but did not have any role in transferable embryo production in buffalo.


2010 ◽  
Vol 22 (1) ◽  
pp. 233
Author(s):  
L. V. M. Gulart ◽  
L. Gabriel ◽  
L. P. Salles ◽  
G. R. Gamas ◽  
D. K. Souza ◽  
...  

FSH at low concentrations affect embryo production. In vitro culture conditions also affect embryo production and embryonic expression of genes and alter oocyte competence to produce embryos. The search for better and less variable culture conditions simulating those in vivo has led to the development of several systems of oocyte in vitro maturation culture. To compare the efficiency of the systems of MIV we utilized 4 groups: (1) TCM-199 control; (2) α-minimal essential medium (MEM); 3) α-MEM + 1 ng of FSH; 4) α-MEM+ 10 ng of FSH. The medium of Group 1 is non-defined by the presence of fetal calf serum (10%). Groups 2, 3, and 4 are defined and polyvinyl alcohol (1%) was used as a macromolecule. Porcine FSH (1 IU mg-1) was used at 1 and 10 ng mL-1 and at 100 ng in defined and non-defined medium, respectively. Bovine ovaries were collected at an abbatoir. Oocytes (n = 1718) with homogeneous cytoplasm and with more than 3 layers of granulosa cells were used. Mature oocytes from the 4 treatments (11 replicates of each treatment) were inseminated with frozen-thawed, motile sperm separated by Percoll, using Sperm TALP HEPES medium. Presumptive zygotes with up to 2 or 3 layers of cumulus cells were cultured in 50-mL drops of SOF medium, supplemented with 10% FCS and 1 mg mL-1 BSA under mineral oil in a humid 5% CO2 atmosphere at 38.5°C after. Cleavage rate was evaluated 72 h post-insemination (hpi), and blastocyst rate was evaluated 168-192 hpi. Cleavage and blastocyst rates were calculated on the basis of number of presumptive zygotes. The expression of the following genes (Bax, Bcl-2, and conexin 43) was evaluated in blastocysts by RT-PCR. One-way ANOVA was used to compare blastocyst number. There was no difference in the proportion of embryos with more than 8 blastomeres in all groups tested, indicating that the rate of development during the first 72 hpi was similar for oocytes matured in chemically defined medium and for oocytes matured in medium containing serum. Bax is a pro-apoptotic marker and Bcl-2 an antiapoptotic marker. Connexin 43 (Cx43) may be a marker of embryo competence. Glyceraldehyde 3-phosphate dehydrogenase was used as internal control. The Bax gene was not expressed in any group. The Bcl-2 and Cx43 genes were expressed, mainly in the α-MEM 10. Although no differences were observed in blastocyst rate among the groups (30% to 40%), the strong expression of Bcl-2 and of Cx43 on the group containing 10 ng mL-1 of FSH may indicate that FSH could improve embryo quality under defined conditions. The authors thank FAP-DF, CNPq, FUNPE, FINATEC, CAPES, and Biovitro Tecnologia de Embrioes Ltda, for laboratory assistance and grants, and Frigorifico Ponte Alta, Brasília-DF, for supplying bovine ovaries.



2012 ◽  
Vol 24 (1) ◽  
pp. 194
Author(s):  
S. Miyashita ◽  
Y. Inaba ◽  
T. Somfai ◽  
M. Geshi ◽  
T. Nagai ◽  
...  

The objective of this study was to investigate the effects of the supplementation of a lipid metabolism inducer, L-carnitine (LC) and a membrane stabilizer, linoleic acid albumin (LAA), on the developmental competence and cryosurvival of bovine in vitro-matured/in vitro-fertilized embryos in in vitro culture medium. Cumulus–oocyte complexes collected from the ovaries of slaughtered cattle were matured for 20 h in TCM-199 supplemented with 5% calf serum (CS) and 0.02 AU mL–1 of FSH at 38.5°C in an atmosphere of 5% CO2 in air. After IVF (Day 0), presumptive zygotes were cultured in CRlaa containing 5% CS at 38.5°C in an atmosphere of 5% CO2, 5% O2 and 90% N2 for 9 days. The culture medium was supplemented with 0.6 mg mL–1 of LC (LC group; n = 180) or with 0.25 mg mL–1 of LAA (LAA group; n = 180) or with both LC and LAA (LC + LAA group; n = 180) or without LC and LAA (control; n = 178). The cleavage rates were recorded on Day 2 and the blastocyst formation rates were recorded on Day 7 to 9. Expanded blastocysts harvested on Day 7 and 8 (LAA group: n = 31; LC group: n = 29; LC + LAA group: n = 25; control group: n = 33) were used for freezing in modified PBS supplemented with 1.5 M ethylene glycol, 0.1 M sucrose and 20% CS. After thawing, they were cultured in TCM-199 supplemented with 20% FBS and 0.1 mM β-mercaptoethanol at 38.5°C under 5% CO2 in air for 72 h. The rates of re-expansion, hatching and formation of hatched blastocysts were determined at 24, 48 and 72 h after thawing, respectively. The rates of cleavage and blastocyst formation were expressed as mean ± s.e.m. and analysed by ANOVA. The post-thaw survival rates of frozen embryos were analysed by chi-square test. The cleavage rate in the control group (69.1 ± 2.5%) was significantly lower than that in the LAA (81.8 ± 3.8%) and LC + LAA groups (77.9 ± 1.4%) but did not differ from that in the LC group (73.8 ± 2.4%). The blastocyst formation rate in the control group (21.7 ± 2.8%) was significantly lower (P < 0.05) than those in the LAA and LC + LAA groups (33.5 ± 2.8% and 31.4 ± 2.4%, respectively), but it did not differ significantly from that of the LC group (32.1 ± 3.3%) despite a strong tendency (P = 0.06). There were no significant differences among the control, LC, LAA and the LC + LAA groups in post-thaw re-expansion rates (66.7, 75.9, 67.7 and 76.0%, respectively), hatching rates (48.5, 69.0, 58.1 and 64.0%, respectively) and rates of formation of hatched blastocysts (51.5, 62.1, 61.3 and 64.0%, respectively). These results indicate that the addition of LC and LAA to the medium for in vitro culture of in vitro-matured/in vitro-fertilized bovine embryos improved their ability to develop to the blastocyst stage; however, the effects on the freezing tolerance were not verified.



2010 ◽  
Vol 22 (1) ◽  
pp. 193
Author(s):  
J. C. Mezzalira ◽  
L. U. Ohlweiler ◽  
A. Massie ◽  
E. Monaco ◽  
E. P. Silva ◽  
...  

Despite the rather successful and widespread use of cloning in various species, distinct cell types from the same species and even the same genotype display differences in blastocyst yield. Moreover, variations in the protocol for embryo production can influence development to the blastocyst stage and subsequent fetal development. The aim of this study was to evaluate the effect of 2 cell types and 2 embryo pre-activation protocols with or without the presence of FCS in the in vitro culture medium on development of handmade pig cloned embryos to the blastocyst stage. Cumulus-oocyte complexes recovered from sow ovaries were in vitro-matured for 38 to 40 h. Denuded matured oocytes selected by the presence of a polar body had the zona pellucida removed in a 0.2% protease HEPES-buffered solution +25% FCS, followed by manual bisection and UV screening of enucleated halves using Hoechst stain. Clone embryo reconstruction was performed using a phytohemoagglutinin solution to adhere 2 cytoplasts and a somatic cell. Adipocyte-derived mesenchymal stem cells (ADMSC) from a Yorkshire pig or granulosa cells (GC) from an Ossabaw pig were used as nuclear donors. Following electrical fusion, couplets were pretreated with a brief exposure to cytochalasin B (CB) or cytochalasin B + cycloheximide (CB+CX) in the presence of serum before the electrical activation (Naruse et al. 2007 Theriogenology 68, 709-716; Du et al. 2009 Reprod. Fertil. Dev. 21, 114). Activated embryos were in vitro-cultured in the well of the well (WOW) system, with 2 embryos per microwell, for 7 days in PZM-3 medium +0.3% BSA in the presence (FBS+) or absence (FBS-) of 10% FCS. Cleavage (Day 2, chi-square test) and blastocyst (Day 7, Fisher test) rates, on a per WOW basis, were compared for a level of significance of 5%. Our preliminary data indicate that the presence of serum in the IVC affected cleavage and blastocyst yield in a cell-type-dependent manner. The presence of serum enhanced the blastocyst yield for ADMSC, whereas for GC, only the absence of serum allowed any blastocyst development. The cell type and the pre-activation protocol did not appear to affect cleavage and embryo development to the blastocyst stage. Despite the low number of replications, our results reinforce the importance of optimizing the embryo production system taking into consideration the individual requirements for distinct cell types, procedures, and culture conditions. Table 1.Effects of cell type, pre-activation process and in vitro culture (IVC) medium on development of handmade pig cloned embryos



2014 ◽  
Vol 26 (1) ◽  
pp. 123
Author(s):  
Y. Liu ◽  
A. Lucas-Hahn ◽  
B. Petersen ◽  
R. Li ◽  
P. Hassel ◽  
...  

Two nuclear transfer (NT) techniques are routinely used to produce cloned animals, traditional cloning (TC) and handmade cloning (HMC). The TC embryos keep their zona and can be transferred at early stages, whereas HMC embryos are zona-free and must be cultured to the morula/blastocyst stage before transfer. Some studies have shown that in vitro culture reduces embryo development and quality, but it is not known whether embryos produced by TC or HMC differ because of the NT method or the in vitro culture. Therefore, we investigated the developmental competence and histone acetylation (H3K18ac) of porcine NT embryos produced by TC and HMC with (Day 5 and 6) or without (Day 0) in vitro culture. Nuclear transfer experiments were performed on same day (Day 0), using same batch of porcine oocytes and donor cells and same in vitro culture conditions. Cloning procedures were previously described (TC : Cloning Stem Cells 10 : 355; HMC : Zygote 20 : 61). Parthenogenetically activated embryos (PA) were used as control of activation and culture conditions. Embryos from all groups were collected for immunostaining of H3K18ac on Days 0, 5, and 6. The normalized H3K18ac level was calculated as previously described (Epigenetics 6 : 177). Cell numbers per blastocyst in each group were counted on Days 5 and 6. The cleavage rate (Day 2) and blastocyst rates (Days 5 and 6) between groups were analysed by Chi-squared test, whereas cell number per blastocysts and H3K18ac level between groups and days were analysed by ANOVA (SAS version 9.2; SAS Institute Inc., Cary, NC, USA). Cleavage rate of HMC embryos was lower than that of TC embryos, but blastocyst rate and cell number per blastocyst were higher in the HMC group compared with TC (Table 1). Differences of H3K18ac level between HMC, TC, and PA groups were only observed on Day 6 but not on Day 0 or Day 5. Within HMC and TC groups, there was no difference in H3K18ac level between Day 0 and Day 5, but the level was lower on Day 6 compared with Day 5 in the HMC group, whereas the TC group displayed the opposite pattern. In conclusion, NT embryos produced by HMC show higher blastocyst rate and cell number per blastocyst compared with TC embryos. Both in vitro culture and the NT method result in differences of the normalized H3K18ac levels. Further study is needed to investigate putative differences between NT embryos produced by HMC and TC compared to in vivo embryos also after transfer to recipients. Table 1.Cleavage and blastocyst rate, cell numbers, and normalized H3K18ac level for handmade cloning (HMC), traditional cloning (TC), and parthenogenetically activated (PA) embryos1



2010 ◽  
Vol 22 (1) ◽  
pp. 231
Author(s):  
J. Block ◽  
L. Bonilla ◽  
P. J. Hansen

The objective of the present study was to determine whether culture of bovine embryos in a proprietary serum-free culture medium, Block-Bonilla-Hansen-7 (BBH-7), could improve development to the blastocyst stage and enhance survival following vitrification. For Exp. 1, embryos were produced in vitro and cultured in BBH-7 or modified synthetic oviductal fluid (mSOF; as in zygote 10:341 except with 10 μL mL-1 of nonessential amino acids, 20 μL mL-1 of essential amino acids, and 1 mg mL-1 of polyvinyl alcohol instead of albumin) in 5% (v/v) oxygen. Grade 1 expanded blastocysts were harvested at Day 7 post-insemination and vitrified using the open-pulled straw method (Vagta et al. 1998 Mol. Reprod. Dev. 51, 53-58). Vitrified embryos were thawed and cultured in vitro in either mSOF or BBH-7 supplemented with 10% fetal bovine serum and 50 μM dithiolthreitol. Re-expansion and hatching rates were recorded at 24, 48, and 72 h post-thaw. There was no effect of culture medium on cleavage rate. The proportion of oocytes that developed to the blastocyst and advanced blastocyst stages (expanded, hatching, and hatched) at Day 7 was higher (P < 0.001) for embryos cultured in BBH-7 than for embryos cultured in mSOF (41.9 ± 2.0 v. 14.7 ± 2.0% and 31.1 ± 1.3 v. 6.4 ± 1.3%, respectively). There was no effect of culture medium on re-expansion rates at 24, 48, and 72 h post-thaw or on hatching rates at 48 or 72 h. However, the proportion of embryos that were hatching or had hatched by 24 h post-thaw was higher (P < 0.001) for BBH-7 than for mSOF (59.0 ± 0.5 v. 26.7 ± 0.5%). For Exp. 2, late lactation and/or repeat breeder, lactating Holstein cows were synchronized for timed embryo transfer using the OvSynch-56 protocol. Embryos were produced in vitro and cultured in BBH-7 in 5% (v/v) oxygen. Vitrified embryos were produced as for Exp. 1. Fresh embryos were grade 1 expanded blastocysts harvested at Day 7 after insemination. A single embryo was transferred at Day 7 after putative ovulation to all cows with a corpus luteum confirmed by ultrasonography. Pregnancy was diagnosed at Day 28-30 of gestation by ultrasonography. There was no difference in the proportion of recipients that became pregnant after receiving either a fresh (7/18 = 39%) or vitrified (10/27 = 37%) embryo cultured in BBH-7. The results of the present study indicate that BBH-7 can be used to increase the proportion of oocytes that develop to the blastocyst stage. Moreover, the results demonstrate that vitrified embryos produced after culture in BBH-7 can achieve pregnancy rates similar to those obtained using fresh embryos. Support: USDA 2006-55203-17390 and Southeast Milk Checkoff Program.



2015 ◽  
Vol 27 (1) ◽  
pp. 205 ◽  
Author(s):  
E. Mullaart ◽  
F. Dotinga ◽  
C. Ponsart ◽  
H. Knijn ◽  
J. Schouten

Improving the efficiency of the in vitro production (IVP) process is very important because it results in more embryos to be used in breeding programs or as commercial service. At CRV, a culture medium consisting of SOF with amino acids and BSA is used. In the past, richer culture media were used with 10% fetal calf serum combined with BRL cell co-culture. Although the efficiency of the IVP process of these media was good, these rather high serum concentrations were quite often related to large offspring syndrome (LOS). The switch to a culture system without serum resulted in a significant reduction in LOS but also in a reduction of embryo yield. The aim of the present study was to investigate the effect of adding low amounts of serum to the culture medium on efficiency of embryo production. Immature cumulus-oocyte complexes (COC) were recovered from ovaries 6 to 8 h upon slaughter. The COC were matured in vitro in TCM199/FCS/LH/FSH supplemented with cysteamine (0.1 mM). Subsequently, matured oocytes were fertilised with frozen-thawed gradient-separated semen and further cultured for 7 days in SOFaaBSA. The SOF medium contained either 0 (control), 0.1, 0.5, or 1.0% oestrus cow serum (ECS). Embryos development was scored at Day 7. Three replicates were performed and results were analysed by chi-square analyses. The results clearly show that adding ECS significantly improved embryo production (Table 1). Interestingly, already very low amounts (0.1%) of serum gave a significant increase in embryo percentage. In conclusion, addition of very low amounts of ECS (0.1%) is beneficial for embryo production, resulting in significantly higher embryo production (from 19 to 27%). In a subsequent field trial with OPU-derived embryos, the effect of addition of 0.1% ECS on birth weight (LOS) of the calves has to be investigated. Table 1.Percentage of blastocysts at Day 7 after culture in SOF medium with different amounts of serum



2008 ◽  
Vol 20 (1) ◽  
pp. 142
Author(s):  
J. Block ◽  
L. Bonilla ◽  
P. J. Hansen

Objectives were to identify modifications in culture conditions that improve blastocyst yield and cryosurvival. The objective of Experiment 1 was to determine effects of sequential culture and fructose on blastocyst yield. Embryos were cultured in modified SOF with 4 mg mL–1 bovine serum albumin (BSA) and 1.0 mm alanyl-glutamine in 5% (v/v) oxygen with or without 0.5 mm fructose in either a static or sequential culture system. For the sequential system, embryos >4 cells were selected and placed in fresh drops of medium at day 3 after insemination. Culture system and fructose did not affect cleavage rate or the proportion of embryos >4 cells on day 3. The proportion of >4 cell embryos that developed to the blastocyst stage was higher (P < 0.04) for static culture than for sequential culture (41.6 � 1.2 v. 30.6 � 1.2%) and there was a trend (P = 0.1) for the proportion of oocytes that developed to blastocyst at day 7 to be greater for static culture (26.8 � 1.2 v. 20.9 � 1.2%). In both culture systems, fructose increased (P < 0.03) blastocyst yield from embryos >4 cells (32.5 � 1.2 v. 39.7 � 1.2%) and tended (P < 0.06) to improve blastoocyst yield from oocytes (21.8 � 1.1 v. 25.3 � 1.1%). The objective of Exp. 2 was to evaluate whether blastocyst yield and survival after cryopreservation would be enhanced by BSA and hyaluronan. Embryos produced in vitro were cultured in 5% oxygen using a static system of modified SOF with or without 4 mg mL–1 BSA and with 0, 0.1, 0.5, or 1 mg mL–1 hyaluronan. Blastocyst and expanded blastocyst stage embryos on day 7 were vitrified (Campos-Chillon LF et al. 2006 Theriogenology 65, 1200–1214). Vitrified embryos were thawed and then cultured for 72 h in modified SOF containing 10% (v/v) fetal bovine serum and 50 µm dithiothreitol. Re-expansion rate was recorded at 24 and 48 h, and the proportion of embryos that hatched by 72 h of culture was recorded. There was no effect of BSA or hyaluronan on cleavage rate. Blastocyst yield from oocytes was increased (P < 0.0005) by BSA (15.3 � 1.1 v. 20.9 � 1.1%). Addition of hyaluronan at 1 mg mL–1 improved (P < 0.04) blastocyst yield (16.2 � 1.7 v. 21.2 � 1.7%), but there was no effect at lower concentrations. There were no interactions between BSA and hyaluronan. Re-expansion rate at 24 and 48 h after thawing was reduced (P < 0.007) by BSA (24 h: 39.1 � 3.6 v. 17.0 � 3.6%; 48 h: 45.6 � 3.8 v. 18.7 � 3.7%), and BSA tended (P < 0.06) to reduce hatching rate at 72 h (22.3 � 3.0 v. 9.8 � 3.0%). Treatment of embryos with hyaluronan did not affect re-expansion rate at 24 h but tended (P < 0.08) to increase re-expansion at 48 h. Moreover, hyaluronan increased (P < 0.05) hatching rate at 72 h after thawing (0 mg mL–1 – 9.8 � 4.2; 0.1 mg mL–1 – 16.9 � 4.5; 0.5 mg mL–1 – 23.4 � 4.1; 1.0 mg mL–1 – 14.2 � 4.1%). In conclusion, blastocyst yield was improved by addition of fructose, BSA, and hyaluronan to culture medium and by use of a static culture system. Hyaluronan also enhanced cryosurvival, but BSA was detrimental to blastocyst survival after vitrification. Support: USDA NRI 2006-55203-17390, BARD US-3551-04.



Zygote ◽  
2014 ◽  
Vol 23 (3) ◽  
pp. 327-335 ◽  
Author(s):  
Hruda Nanda Malik ◽  
Dinesh Kumar Singhal ◽  
Shrabani Saugandhika ◽  
Amit Dubey ◽  
Ayan Mukherjee ◽  
...  

SummaryThe present study was carried out to investigate the effects of different activation methods and culture media on the in vitro development of parthenogenetic goat blastocysts. Calcium (Ca2+) ionophore, ethanol or a combination of the two, used as activating reagents, and embryo development medium (EDM), modified Charles Rosenkrans (mCR2a) medium and research vitro cleave (RVCL) medium were used to evaluate the developmental competence of goat blastocysts. Quantitative expression of apoptosis, stress and developmental competence-related genes were analysed in different stages of embryos. In RVCL medium, the cleavage rate of Ca2+ ionophore-treated oocytes (79.61 ± 0.86) was significantly (P < 0.05) higher than in ethanol (74.90 ± 1.51) or in the combination of both Ca2+ ionophore and ethanol. In mCR2a or EDM, hatched blastocyst production rate of Ca2+ ionophore-treated oocytes (8.33 ± 1.44) was significantly higher than in ethanol (6.46 ± 0.11) or in the combined treatment (6.70 ± 0.24). In ethanol, the cleavage, blastocyst and hatched blastocyst production rates in RVCL medium (74.90 ± 1.51, 18.30 ± 1.52 and 8.24 ± 0.15, respectively) were significantly higher than in EDM (67.81 ± 3.21, 14.59 ± 0.27 and 5.59 ± 0.42) or mCR2a medium (65.09 ± 1.57, 15.36 ± 0.52 and 6.46 ± 0.11). The expression of BAX, Oct-4 and GlUT1 transcripts increased gradually from 2-cell stage to blastocyst-stage embryos, whereas the transcript levels of Bcl-2 and MnSOD were significantly lower in blastocysts. In addition, different activation methods and culture media had little effect on the pattern of variation and relative abundance of the above genes in different stages of parthenogenetic activated goat embryos. In conclusion, Ca2+ ionophore as the activating agent, and RVCL as the culture medium are better than other tested options for development of parthenogenetic activated goat blastocysts.



1993 ◽  
Vol 5 (4) ◽  
pp. 405 ◽  
Author(s):  
ZF Du ◽  
RG Wales

The effects of EDTA and the presence of glucose and glutamine in CZB medium on the development of mouse zygotes of different genotype were investigated. Although 30-80% of zygotes (depending on the cross) passed the 2-cell stage in EDTA-free medium, the addition of a low concentration of EDTA was necessary in these experiments to obtain blastocysts in culture. In reciprocal crosses between outbred (Qs), inbred (DBA/2) and hybrid (B10D2F1) stock, there was evidence of a strong influence of the maternal genome on zygote development, with those from B10D2F1 females performing best irrespective of sire. A paternal influence on development was also evident but the most successful sire varied with the genotype of female used and reciprocal crosses differed greatly in the ability of the resultant zygote to develop in culture. For zygotes recovered from Qs females, CZB medium containing glucose and glutamine supported development to the blastocyst stage better than did medium devoid of these substrates. Tests with embryos from B10D2F1 females indicated that the presence of glucose for the whole or for part of the incubation period stimulated blastocyst development. However, the addition of glutamine to the medium in these tests had no significant effect on the development of blastocysts.



2013 ◽  
Vol 25 (1) ◽  
pp. 254 ◽  
Author(s):  
A. Gad ◽  
U. Besenfelder ◽  
V. Havlicek ◽  
M. Hölker ◽  
M. U. Cinar ◽  
...  

The aim of this study was to examine the effect of in vitro culture conditions at specific phases of early embryonic development on the transcriptome profile of bovine blastocysts. Simmental heifers were superovulated and artificially inseminated 2 times with the same frozen–thawed commercial bull semen. Using nonsurgical endoscopic oviductal flushing technology (Besenfelder et al. 2001 Theriogenology 55, 837–845), 6 different blastocyst groups were flushed out at different time points (2-, 4-, 8-, 16-, 32-cell and morula). After flushing, embryos cultured under in vitro conditions until the blastocyst stage. Blastocysts from each group were collected and pooled in groups of 10. Complete in vivo blastocysts were produced and used as control. A unique custom microarray (Agilent) containing 42 242 oligo probes (60-mers) was used over 6 replicates of each group v. the in vivo control group to examine the transcriptome profile of blastocysts. A clear difference in terms of the number of differentially expressed genes (DEG, fold change ≥2, false discovery rate ≤0.05) has been found between groups flushed out at 2-, 4-, and 8-cell (1714, 1918, 1292 DEG, respectively) and those flushed out at 16-, 32-cell and morula stages and cultured in vitro until blastocyst stage (311, 437, 773 DEG, respectively) compared with the complete vivo group. Ontological classification of DEG showed cell death to be the most significant function in all groups. However, the longer time embryos spent under in vitro conditions, the more the percentage of DEG involved in cell death and apoptosis processes are represented in those groups. In addition, genes related to post-translational modification and gene expression processes were significantly dysregulated in all groups. Pathway analysis revealed that protein ubiquitination pathway was the dominant pathway in the groups flushed out at 2-, 4-, and 8-cells but not in the other groups flushed at later stages compared with the in vivo control group. Moreover, retinoic acid receptor activation and apoptosis signalling pathways followed the same pattern. Embryos flushed out before the time of embryonic genome activation and subsequently cultured in vitro were highly affected by culture conditions. Overall, the results of the present study showed that despite the fact that embryos originated from the same source, in vitro culture condition affected embryo quality, measured in terms of gene expression, in a stage-specific manner.



Sign in / Sign up

Export Citation Format

Share Document