123 OPTIMIZATION OF CULTURE CONDITIONS FOR IN-VITRO-PRODUCED BOVINE EMBRYOS TO ENHANCE BLASTOCYST YIELD AND SURVIVAL FOLLOWING VITRIFICATION

2008 ◽  
Vol 20 (1) ◽  
pp. 142
Author(s):  
J. Block ◽  
L. Bonilla ◽  
P. J. Hansen

Objectives were to identify modifications in culture conditions that improve blastocyst yield and cryosurvival. The objective of Experiment 1 was to determine effects of sequential culture and fructose on blastocyst yield. Embryos were cultured in modified SOF with 4 mg mL–1 bovine serum albumin (BSA) and 1.0 mm alanyl-glutamine in 5% (v/v) oxygen with or without 0.5 mm fructose in either a static or sequential culture system. For the sequential system, embryos >4 cells were selected and placed in fresh drops of medium at day 3 after insemination. Culture system and fructose did not affect cleavage rate or the proportion of embryos >4 cells on day 3. The proportion of >4 cell embryos that developed to the blastocyst stage was higher (P < 0.04) for static culture than for sequential culture (41.6 � 1.2 v. 30.6 � 1.2%) and there was a trend (P = 0.1) for the proportion of oocytes that developed to blastocyst at day 7 to be greater for static culture (26.8 � 1.2 v. 20.9 � 1.2%). In both culture systems, fructose increased (P < 0.03) blastocyst yield from embryos >4 cells (32.5 � 1.2 v. 39.7 � 1.2%) and tended (P < 0.06) to improve blastoocyst yield from oocytes (21.8 � 1.1 v. 25.3 � 1.1%). The objective of Exp. 2 was to evaluate whether blastocyst yield and survival after cryopreservation would be enhanced by BSA and hyaluronan. Embryos produced in vitro were cultured in 5% oxygen using a static system of modified SOF with or without 4 mg mL–1 BSA and with 0, 0.1, 0.5, or 1 mg mL–1 hyaluronan. Blastocyst and expanded blastocyst stage embryos on day 7 were vitrified (Campos-Chillon LF et al. 2006 Theriogenology 65, 1200–1214). Vitrified embryos were thawed and then cultured for 72 h in modified SOF containing 10% (v/v) fetal bovine serum and 50 µm dithiothreitol. Re-expansion rate was recorded at 24 and 48 h, and the proportion of embryos that hatched by 72 h of culture was recorded. There was no effect of BSA or hyaluronan on cleavage rate. Blastocyst yield from oocytes was increased (P < 0.0005) by BSA (15.3 � 1.1 v. 20.9 � 1.1%). Addition of hyaluronan at 1 mg mL–1 improved (P < 0.04) blastocyst yield (16.2 � 1.7 v. 21.2 � 1.7%), but there was no effect at lower concentrations. There were no interactions between BSA and hyaluronan. Re-expansion rate at 24 and 48 h after thawing was reduced (P < 0.007) by BSA (24 h: 39.1 � 3.6 v. 17.0 � 3.6%; 48 h: 45.6 � 3.8 v. 18.7 � 3.7%), and BSA tended (P < 0.06) to reduce hatching rate at 72 h (22.3 � 3.0 v. 9.8 � 3.0%). Treatment of embryos with hyaluronan did not affect re-expansion rate at 24 h but tended (P < 0.08) to increase re-expansion at 48 h. Moreover, hyaluronan increased (P < 0.05) hatching rate at 72 h after thawing (0 mg mL–1 – 9.8 � 4.2; 0.1 mg mL–1 – 16.9 � 4.5; 0.5 mg mL–1 – 23.4 � 4.1; 1.0 mg mL–1 – 14.2 � 4.1%). In conclusion, blastocyst yield was improved by addition of fructose, BSA, and hyaluronan to culture medium and by use of a static culture system. Hyaluronan also enhanced cryosurvival, but BSA was detrimental to blastocyst survival after vitrification. Support: USDA NRI 2006-55203-17390, BARD US-3551-04.

2004 ◽  
Vol 16 (2) ◽  
pp. 243
Author(s):  
A.T.D. Oliveira ◽  
C. Gebert ◽  
R.F.F. Lopes ◽  
H. Niemann ◽  
J.L. Rodrigues

In spite of in vitro embryo production systems having been greatly improved over recent years, employing a variety of culture conditions (media, protein sources, gas atmosphere, etc.), we still do not know much about the real necessity of embryos to develop under the same conditions as occur in vivo. These differences between in vivo and in vitro culture at preimplantation embryonic stages can produce deviations in gene expression and in normal fetal development (large offspring syndrome). Heat shock proteins (Hsp) are engaged in cell response to regulatory signals or perturbations in the microenviroment and can be used as a sensitive indicator of stress caused by suboptimal culture conditions (Wrenzycki et al., 2001Hum. Reprod. 16, 893–901). Hsp act as chaperones in facilitating protein folding and assembly and stabilize damaged proteins to prevent aggregation of fragments, thereby allowing repair or degradation. The aim of the present study was to investigate the effects of different embryo/volume ratios on bovine embryo development and the relative abundance of Hsp 70.1 gene transcripts. In this experiment, oocytes were isolated from slaugterhouse ovaries and matured, fertilized and cultured in groups of 5, 10, 20 or 30 per each drop of 100μL. The oocytes were matured in TCM 199 supplemented with 0.4% BSA. After maturation, oocytes were fertilized in TALP medium, using frozen/thawed sperm, selected using a percoll density gradient. The zygotes were cultured to the morula or Day 7 blastocyst stage employing SOF supplemented with 0.4 % BSA. Developmental check points were cleavage rate (Day 3pi), blastocyst formation (Day 8pi) and hatching (Day 11pi). A semi-quantitative RT-PCR assay was used to determine the relative levels of gene transcripts in single embryos at morula (Day 6) and blastocyst (Day 7) stages (Wrenzycki et al., 2001 Biol. Reprod. 65, 309–317). Data of cleavage, blastocyst formation and hatching rates were analyzed using chi-square test. Relative abundance (RA) of Hsp 70.1mRNA were compared in tested groups using ANOVA followed a Tukey test. Differences at P&lt;0.05 were considered significant. Results show that no significative difference in hatching rate per blastocyst produced was detected among the four groups. Cleavage rate and blastocyst formation were significantly higher in groups with 5, 10 and 20 embryos compared with drops containing 30 embryos. Hsp transcripts were detected in morula and blastocyst stages in all groups. In morula stage, no differences were observed in the RA of Hsp 70.1mRNA among groups with 5, 10, 20 and 30 embryos cultured per drop. However, in blastocyst stage, the RA was significantly increased in the group with 20 embryos per drop as compared to the group with 5 embryos. The results show that different embryo/volume ratios in culture influence not only cleavage rate, blastocyst formation and hatching rate, but also expression of Hsp 70.1 gene. Further studies changing other culture conditions and using in vivo-derived bovine embryos will aid in elucidating which culture systems are ideal to produce bovine embryos in vitro. This research was supported by CAPES/DAAD program and CNPq.


2013 ◽  
Vol 58 (No. 10) ◽  
pp. 443-452 ◽  
Author(s):  
B. Heidari ◽  
A. Shirazi ◽  
M.-M. Naderi ◽  
M.-M. Akhondi ◽  
H. Hassanpour ◽  
...  

Considering the advent of mesenchymal stem cells (MSCs) as a new source of somatic cells in embryo co-culture system, the current study was aimed to compare in vitro embryo development using embryonic MSCs monolayer with embryonic fibroblast cells (EFCs), oviductal epithelial cells (OECs), and cell-free culture system. The IVM/IVF presumptive sheep zygotes were randomly cultured in different culture conditions as follows: (1) SOFaaBSA medium for the whole culture period (SOF, n = 371), (2) SOFaaBSA medium for the first 3 days followed by co-culturing with MSCs for the next 5 days (SOF-MSCs, n = 120), (3) co-culturing with MSCs for the first 3 days followed by culture in SOFaaBSA medium for the next 5 days (MSCs-SOF, n = 133), (4) co-culturing with MSCs for the whole culture period (MSCs, n = 212), (5) SOFaaBSA medium for the first 3 days followed by co-culturing with EFCs for the next 5 days (SOF-EFCs, n = 132), (6) co-culturing with EFCs for the first 3 days followed by culture in SOFaaBSA medium for the next 5 days (EFCs-SOF, n = 165), (7) co-culturing with EFCs for the whole culture period (EFCs, n = 236), and (8) co-culturing with OECs for the whole culture period (OECs, n = 255). One-Way ANOVA by multiple pairwise comparisons using Tukey&rsquo;s test was performed. Co-culturing in MSCs group had no superiority over EFCs and OECs groups. Though, when co-culturing with MSCs and EFCs was limited to the first 3 days of culture, the embryo development indices were improved compared to the other co-cultured groups. Considering both the hatching rate and total cell number, the application of MSCs for the first 3 days of culture (MSCs-SOF) was superior to the other co-culture and SOF groups. &nbsp;


2018 ◽  
Vol 30 (1) ◽  
pp. 205 ◽  
Author(s):  
R. Emmerstorfer ◽  
K. Radefeld ◽  
V. Havlicek ◽  
U. Besenfelder ◽  
H. Yu ◽  
...  

The aim of this work was to establish an in vitro culture approach using bovine oviducal fluid (OF) to improve embryo quality and to provide an in vitro system to study oviduct function. Bovine oviducts ipsilateral to ovulation were collected at the slaughterhouse, 1 to 4 days after ovulation. The OF was collected by flushing the oviducts with 1 mL of Charles Rosenkrans 1 medium (CR1). Samples from 21 oviducts were pooled and proteins were concentrated using centrifugal filter devices. Aliquots of 3 different protein concentrations, determined by Bradford assay, were prepared and stored at –20°C. Abattoir-retrieved cumulus–oocyte complexes were used for standard in vitro maturation (IVM) and IVF (Day 0). On Day 1, presumptive zygotes (n = 1498) were randomly allocated to 4 different culture groups and cultured up to Day 9. The presumptive zygotes of the control group (n = 364) were cultured in CR1 with 5% oestrous cow serum (OCS) supplemented with 1 mg mL−1 hyaluronan. In the experimental groups, OCS was replaced by OF, resulting in 3 groups with final protein concentrations of 0.1 mg mL−1 (n = 380), 0.5 mg mL−1 (n = 380) or 1 mg mL−1 (n = 374). Cleavage rate was recorded on Day 2 and blastocyst yield on Days 7, 8, and 9 after fertilization. On Day 7, blastocysts were removed and either stained (Hoechst 33342) for cell number or subjected to a slow freezing protocol using 1.5 M ethylene glycol. After thawing, the re-expansion and hatching rate of blastocysts were determined at 24, 48 and 72 h. Eight replicates were carried out and data were analysed by ANOVA. Cleavage rate increased with increasing protein concentration (0.1 mg mL−1: 80.9 ± 4.2%; P > 0.05; 0.5 mg mL−1: 83.4 ± 2.5%; P < 0.1) and was significantly higher in the 1 mg mL−1 group (84.5 ± 4.4%; P < 0.05) compared with the control group (79.7 ± 3.4%). The cumulative blastocyst rate on Day 9 was significantly lower (P < 0.05) in all experimental groups (0.1 mg mL−1: 15.8 ± 8.9%; 0.5 mg mL−1: 18.7 ± 12.0%; 1 mg mL−1: 17.0 ± 11.2%) compared with the control group (34.1 ± 5.4%). The total number of cells was not affected by OF (P > 0.05). There was no significant difference (P > 0.05) in the post-thaw re-expansion rate between the experimental groups (0.1 mg mL−1: n = 26 thawed blastocysts; 0.5 mg mL−1: n = 27; 1 mg mL−1: n = 23) and the control group (n = 58). The post-thaw hatching rate was significantly higher at 24 and 72 h, respectively, in the 0.5 mg mL−1 group (44.4% and 74.1%; P < 0.05) and the 1 mg mL−1 group (47.8%; P < 0.05; and 82.6%; P < 0.01) compared with the control group (18.9% and 44.8%). The replacement of serum with OF during in vitro culture of bovine embryos had a stage specific effect, resulting in higher cleavage rates but lower blastocyst rates. To address this issue, OF will be collected at different stages and applied in the matching in vitro culture phases in future studies. Interestingly, the post-thaw hatching rate was up to twice as high in the experimental groups, indicating better quality of those embryos developing to blastocyst stage.


2004 ◽  
Vol 16 (2) ◽  
pp. 240 ◽  
Author(s):  
G. Leoni ◽  
S. Ledda ◽  
L. Bogliolo ◽  
S. Succu ◽  
I. Rosati ◽  
...  

The aim of this work was to evaluate developmental competence and gene expression of prepubertal and adult ovine oocytes. GV prepubertal and adult oocytes were matured, fertilized and cultured in vitro until blastocyst stage;; the time (days) needed to reach this stage was recorded. Blastocysts developed on different days were cultured for hatching to evaluate their quality in relation to cleavage rate. Adult and prepubertal GV oocytes and blastocyst-stage embryos produced, respectively, at 6 and 7 days were compared for quantitative expression of poly(A) polymerase (polyA-P), glucose transporter I (Glut-I), desmocollin II (desmoII), plakofilin (plako) and heat shock protein 70.1 (HSP70) genes. Confirming previous results (Ledda et al., 1996 Zygote 4, 343–348), fertilized prepubertal ovine oocytes developed to blastocyst stage at lower rates than the adult ones (19.9 v. 51.3%, respectively, P&lt;0.001) and this stage was delayed 24h in prepubertal compared to adult embryos (P&lt;0.01), reflecting a lower quality (Fenwick et al., 2002 Hum. Reprod. 17, 407–412) of the former. In fact, 44.7, 25.0, 30.3 and 0% of adult blastocysts were obtained after 6, 7, 8 and 9 days, respectively, of postfertilization culture compared to 0, 48.4, 34.3 and 17.2% of prepubertal ones. Faster-developed blastocysts showed higher hatching rate in both prepubertal (54.8%, 7 days of culture) and adult (89.8%, 6 days). Hatching rate dropped to 18.2% when blastocysts were obtained at 8–9 days in prepubertal and to 54.5% and 32.5% at 7 and 8 days, respectively, in adult embryos. Analysis of gene expression showed that HSP70, plako and desmo genes were not expressed in GV oocytes, and Glut-I mRNA was lower in prepubertal GV oocytes than in the adult ones (P&lt;0.01). All genes were expressed in blastocysts;; we found that Glut-I was at lower levels (P&lt;0.01) in prepubertal-derived blastocysts whereas HSP70 was highly expressed (P&lt;0.05) in prepubertal blastocysts than in those derived from adult oocytes. In conclusion this work shows that prepubertal ovine oocytes have a lower developmental competence compared to the adult ones, correlated to an altered gene expression during the growth phase of the oocyte and early embryonic development. Supported by MIUR (cofin).


2004 ◽  
Vol 16 (2) ◽  
pp. 253
Author(s):  
D.S. Arathy ◽  
S. Ashis ◽  
G.T. Sharma ◽  
A.C. Majumdar ◽  
M.S. Chauhan

In buffalo the success rate of transferable quality embryo production through in vitro procedure is very low as compared to cattle. Sub optimal culture conditions and physical conditions such as specific gravity of the culture medium may lead to a reduced rate of transferable buffalo embryo production from the oocytes matured and fertilized in vitro (Palta &amp; Chauhan,1998 Reprod. Fertil. Dev. 10, 379–391). This experiment was therefore conducted to find out the role of specific gravity of the IVC medium on the development rate of the buffalo embryos in vitro. Follicles of slaughter house ovaries were aspirated and the collected oocytes with cumulus-oocytes complexes (COCs) were cultured in TCM-199 medium supplemented with 10% fetal calf serum, 10% buffalo follicular fluid and 0.5μgmL−1 FSH in 5% CO2 incubator at 38.5°C. The matured oocytes were then inseminated with frozen-thawed buffalo semen suspended in BO medium. After 42h of post-inseminations the cleavage rates were evaluated. The 2–4 cell-cleaved eggs (Day 2 of post-insemination) were randomly divided and cultured for eight days in vitro in 1) modified synthetic fluid (mSOF)+0.8 %BSA (control), 2) mSOF+0.8 % BSA+gelatin (1mgmL−1) 3) mSOF+0.8% BSA+1mgmL−1 gelatin+10ngmL−1 epidermal growth factor (EGF). Supplementation of gelatin increased the specific gravity of the mSOF medium from 0.9658±0.009 to 1.0331±0.013 without any change in pH (7.4). The development of embryos to the 8–16 cell-stage on day 4 of in vitro culture were significantly higher (P&lt;0.05) in mSOF+0.8% BSA+1mgmL−1 gelatin (81.8%; 27/33) than that in mSOF + 0.8% BSA (75.7%; 28/37) and mSOF+0.8% BSA+10ng/mL EGF (68.7%; 22/32). When these embryos were further cultured for another four days (Day 8), the development of transferable quality embryos (morula/blastocyst) was 42.4% (14/33), 48.7% (18/37) and 46.9% (15/32), respectively. Supplementation of gelatin increased the cleavage of eggs up to the 8–16 cell-stage embryo, but did not significantly enhance the rate of development to the morula/blastocyst stage in comparison to control and EGF-supplemented group. However, the percentage of transferable quality embryos was slightly lower in the gelatin-added group but not statistically significant than other groups. The study concluded that increase in specific gravity of the in vitro culture medium enhanced initial cleavage rate but did not have any role in transferable embryo production in buffalo.


Zygote ◽  
2015 ◽  
Vol 24 (2) ◽  
pp. 245-251 ◽  
Author(s):  
M.B. Salviano ◽  
F.J.F. Collares ◽  
B.S. Becker ◽  
B.A. Rodrigues ◽  
J.L. Rodrigues

SummaryCompetent oocyte selection remains a bottleneck in the in vitro production (IVP) of mammalian embryos. Among the vital assays described for selecting competent oocytes for IVP, the brilliant cresyl blue (BCB) test has shown consistent results. The aim of the first experiment was to observe if oocytes directly submitted to IVM show similar cleavage and blastocyst rates as those obtained with oocytes maintained under the same in vitro conditions as the oocytes that undergo the BCB test. Bovine cumulus–oocyte complexes (COCs) were recovered from slaughterhouse-derived ovaries and, after morphological evaluation, were randomised grouped into three groups: (1) directly submitted to IVM; (2) oocytes submitted to the BCB test without the addition of BCB stain (BCB control group); and (3) submitted to the BCB test. The results showed that oocytes directly submitted to IVM reached similar cleavage (48/80 – 60%) and embryonic development rates to the blastocyst stage (10/48 – 21%) as the results obtained with the BCB control group oocytes (45/77 – 58% and 08/45 – 18%, respectively). The aim of the second experiment was to determine the cleavage and blastocyst rates obtained from BCB+ oocytes undergoing IVM in the presence of BCB– oocytes at a ratio of 10:1. COCs were recovered from slaughterhouse-derived ovaries and, after morphological evaluation, were randomised into two groups that were submitted to IVM either directly (1: control group) or submitted to the BCB test prior to IVM. After the BCB test, the COCs were classified as either BCB+ (blue cytoplasm) or BCB– (colourless cytoplasm) and then divided into four experimental groups: (2) BCB+; (3) BCB–; and (4) BCB+ matured in same IVM medium drop as (5) BCB– at a ratio of 10:1. After IVM (24 h), oocytes from the different experimental groups were submitted to in vitro fertilisation (IVF) and in vitro culture (IVC) under the same culture conditions until they reached the blastocyst stage (D7). With regards to the cleavage rate (48 h after IVF), only group 3 (102/229 – 44%) differed (P < 0.05) from the other groups [1 (145/241 – 60%); 2 (150/225 – 67%); 4 (201/318 – 63%) and 5 (21/33 – 63%)]. On day 7, the embryos from group 2 (BCB+) achieved the highest blastocyst rate (46/150 – 31%) (P < 0.05) when compared with the embryo development capacity of the other experimental groups (1: 31/145 – 21%; group 3: 17/102 – 17%; group 4: 46/201 – 23%; and group 5: 2/21 – 10%). In conclusion, submitting BCB+ oocytes that were separated from BCB– oocytes to IVM increases the rate of embryonic development to the blastocyst stage when compared to the control group, BCB– oocyte group, BCB+ paracrine group and BCB– paracrine group. The presence of non-competent oocytes during IVM, even in low proportion (1:10), reduces the capacity of competent oocytes to undergo embryo development and achieve blastocyst stage during IVC.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Kornphimol Kulthong ◽  
Guido J. E. J. Hooiveld ◽  
Loes Duivenvoorde ◽  
Ignacio Miro Estruch ◽  
Victor Marin ◽  
...  

AbstractGut-on-chip devices enable exposure of cells to a continuous flow of culture medium, inducing shear stresses and could thus better recapitulate the in vivo human intestinal environment in an in vitro epithelial model compared to static culture methods. We aimed to study if dynamic culture conditions affect the gene expression of Caco-2 cells cultured statically or dynamically in a gut-on-chip device and how these gene expression patterns compared to that of intestinal segments in vivo. For this we applied whole genome transcriptomics. Dynamic culture conditions led to a total of 5927 differentially expressed genes (3280 upregulated and 2647 downregulated genes) compared to static culture conditions. Gene set enrichment analysis revealed upregulated pathways associated with the immune system, signal transduction and cell growth and death, and downregulated pathways associated with drug metabolism, compound digestion and absorption under dynamic culture conditions. Comparison of the in vitro gene expression data with transcriptome profiles of human in vivo duodenum, jejunum, ileum and colon tissue samples showed similarities in gene expression profiles with intestinal segments. It is concluded that both the static and the dynamic gut-on-chip model are suitable to study human intestinal epithelial responses as an alternative for animal models.


2000 ◽  
Vol 8 (3) ◽  
pp. 241-287 ◽  
Author(s):  
GM Jones

The transfer of a blastocyst established the first human clinical pregnancy following in vitro fertilization (IVF). Nine years later Cohen et al. reported pregnancies resulting from the transfer of cryopreserved human blastocysts. However, it was another six years before the first report of births resulting from the transfer of human blastocysts produced in vitro appeared in the medical literature. In the intervening period clinics have opted to transfer embryos at the early cleavage stage to the uterus, despite the fact that in vivo the embryo does not enter the uterus until two to three days later at the morula to blastocyst stage of development. The viability and potential for implantation of blastocysts is high, as indicated by the finding that more than 60% of in-vivo-derived blastocysts, recovered by uterine lavage following artificial insemination of fertile donors, implant and develop into viable fetuses when transferred to recipients. This is in stark contrast to the 10–20% of in-vitro-produced embryos transferred at the early cleavage stage of development that result in a live-birth. This reduction in viability following transfer of in-vitro-derived early cleavage stage embryos may have several possible explanations: (1) a failure of implantation due to poor synchronization between the embryo and the uterine endometrium; (2) a hostile environment in the uterus for early cleavage stage embryos; (3) sub-optimal in vitro culture conditions which result in a reduction in embryo viability; (4) the assumption that all oocytes retrieved in an IVF cycle have an equal ability to develop into viable embryos; and (5) the failure to identify the most viable embryo in a cohort. Certainly, improving culture conditions and laboratory techniques for developing high quality blastocysts routinely in vitro will not only address many of the above questions but will also improve the quality and viability of earlier stages of embryo development.


2004 ◽  
Vol 16 (2) ◽  
pp. 282 ◽  
Author(s):  
Z. Roth ◽  
P.J. Hansen

Sphingosine-1-phosphate (S1P) is a sphingolipid metabolite that can block the sphingomyelin cell-death pathway by suppressing ceramide-induced apoptosis. The present study was performed to test whether S1P protects oocytes from heat shock during in vitro maturation. Cumulus-oocyte complexes obtained by slicing follicles were placed in maturation medium with or without 50nM S1P and cultured at 38.5°C (CON) or 41°C (41C) for the first 12h of maturation. Incubation during the last 10h of maturation (22-h total maturation time), fertilization, and embryonic development were performed at 38.5°C and 5% (v/v) CO2. Blastocyst development was recorded at 8 days post-insemination (dpi) and activity of group II caspases in 8-day blastocysts was determined using a fluoroprobe, PhiPhiLux-G1D2 (OncoImmunin, Gaithersburg, MD, USA). Data were analysed by least-squares ANOVA with the GLM procedure of SAS. Percentage data were subjected to arcsin transformation before analysis. Exposure of oocytes to thermal stress during the first 12h of maturation reduced cleavage rate (P&lt;0.01) and the number of oocytes developing to the blastocyst stage (P&lt;0.04). There was a temperature x S1P interaction for cleavage rate (P&lt;0.03) because S1P blocked effects of thermal stress on cleavage rate. Without S1P, the percentage of oocytes that cleaved by 3 dpi were 83.6±2.7% and 65.8±2.7% for CON and 41C, respectively. In the presence of S1P, percent cleavage was 86.7±2.7% and 83.9±2.7% for CON and 41C, respectively. There was a trend (P=0.06) for a temperature x S1P interaction for percent oocytes developing to blastocyst stage because S1P blocked effects of heat shock on development. Without S1P, the percentages of oocytes that developed to the blastocyst stage were 28.7±3.0% and 15.2±3.0% for CON and 41C, respectively. In the presence of S1P, percent blastocysts were 24.3±3.4% and 23.9±3.0% for CON and 41C, respectively. When development was expressed as percentage of cleaved embryos, however, there were no effects of temperature, S1P, or temperature x S1P on percent development to the blastocyst stage. Blastocyst caspase activity was not affected by temperature or S1P. In summary, exposure to physiologically relevant thermal stress during the first 12h of maturation has a deleterious effect on oocyte competence and this effect can be reduced by S1P. The fact that heat shock reduced the percentage of oocytes but not the percentage of cleaved embryos that became blastocysts suggests that oocytes that survive effects of heat shock and cleave have normal potential to develop to the blastocyst stage. Moreover, since heat shock did not affect caspase activity, it is likely that blastocysts from heat-shocked oocytes have normal developmental potential, at least as determined by caspase activity. Support: BARD FI-330-2002 and USDA Grants 2002-35203-12664 and 2001-52101-11318.


2021 ◽  
Vol 10 (14) ◽  
pp. e367101422097
Author(s):  
Arianny Rafaela Neto Silva ◽  
Thaisa Campos Marques ◽  
Elisa Caroline Silva Santos ◽  
Tiago Omar Diesel ◽  
Isabelle Matos Macedo ◽  
...  

The effect of resveratrol supplementation on fresh (E1) or vitrified/warmed (E2) in vitro produced bovine embryos was investigated by evaluating the time-dependent response. After in vitro production, resveratrol (0.5 µM) was added to the incubation media and after two incubation periods with or without resveratrol, blastocysts were re-cultured for 24h. The rates of re-expansion, hatching, total cell number (TCN), apoptotic cells (ACN), reactive oxygen species (ROS) and intracellular glutathione (GSH) content were evaluated. For E1, the re-expansion rate differed at 6 and 10h within and between treatments (P<0.05), as did the re-expansion rate after 24h (P<0.01). The hatching rate increased after 10h with resveratrol (P<0.01) with differences within (P<0.05), but not between treatments after 24h of re-cultivation. At E2, hatching rate differed between treatments at 24h (P<0.01), with higher TCN in resveratrol-treated blastocysts after 10h (P<0.01). Resveratrol supplementation reduced ROS generation in E1 and E2 after 10h of incubation and increased GSH content (P<0.01). These results indicate that supplementation of holding re-cultivation medium with resveratrol for treatment of fresh or vitrified/warmed in vitro produced bovine embryos has a positive and time-dependent effect. The reduction of ROS content, the increase of GSH and the anti-apoptotic ability of resveratrol are responsible for its protective effects, allowing an extension of embryo storage time before transfer to recipients.


Sign in / Sign up

Export Citation Format

Share Document