scholarly journals 196 IN VITRO DEVELOPMENT OF RECONSTRUCTED WATER BUFFALO (BUBALUS BUBALIS) OOCYTES AFTER FETAL SKIN FIBROBLAST CELL NUCLEAR TRANSFER

2005 ◽  
Vol 17 (2) ◽  
pp. 248
Author(s):  
C.R. Meena ◽  
S.K. Das

The present study was undertaken to explore the feasibility of using buffalo fetal skin fibroblasts as donor nuclei and to determine the developmental competence of embryos following transfer of these nuclei to in vitro-matured enucleated buffalo oocytes. Skin cells were isolated from 1–2-month-old fetuses, obtained from an abattoir, by enzymatic digestion (0.5% w/v trypsin + 0.05% w/v collagenase in Dulbecco's PBS) for 15–20 min. The cells were washed four times with Dulbecco's PBS and then once with RPMI-1640 medium + 10% FBS by centrifugation at 600g. The cells were then cultured in the same medium in a CO2 incubator (5% CO2 in air) at 38.5°C for 2–3 days. COCs collected from slaughterhouse buffalo ovaries were subjected to IVM in the IVM medium (TCM-199 + 1 μg mL−1 E-β + 5 μg mL−1 FSH-P + 10 μg mL−1 LH + 10% FBS) for 22–24 h in a CO2 incubator (5% CO2 in air) at 38.5°C. Oocytes were denuded with 0.1% trypsin followed by repeated pipetting and then enucleated by aspirating the first polar body and 10–15% of nearby cytoplasm with a micromanipulator. Two different types of donor cells (growing cells and those arrested with cytochalasin-B) were used for reconstruction of oocytes. The reconstructs were electrofused and incubated in the activation medium (TCM-199 + 8 μg mL−1 cytochalasin-B + 10% FBS) for 4 h. These were then cultured in IVC medium (TCM-199 + 10% FBS) in a CO2 incubator (5% CO2 in air) at 38.5°C for 48 h. Next, the cleaved embryos were co-cultured with buffalo oviductal cells in embryo development medium. Out of 119 denuded matured oocytes which were enucleated and reconstructed with growing cells, 78 (65.5%) were electrofused, activated and cultured, out of which 4 (5.1%) reconstructs cleaved and developed to the 2-cell stage, 3 (3.8%) reached the 4-cell stage, and 1 (1.3%) reached the 8-cell stage. In the synchronized group, out of 100 denuded matured oocytes which were reconstructed with cytochalasin-B blocked cells, 40 (40%) were electrofused, activated, and cultured, out of which 4 (10%) developed to the 2-cell stage, 3 (7.5%) to the 4-cell stage, 2 (5.0%) to early morula stage, and 1 (2.5%) to blastocyst stage. These results suggest that buffalo fetal skin fibroblasts could be used as donor nuclei for the production of buffalo embryos after nuclear transfer to enucleated in vitro-matured buffalo oocytes.

2011 ◽  
Vol 23 (1) ◽  
pp. 128
Author(s):  
J. Lee ◽  
J. Park ◽  
Y. Chun ◽  
W. Lee ◽  
K. Song

Study for equine somatic cell nuclear transfer (SCNT) is an attractive field for research, but it has not been a major field of study because it is hard to obtain a sufficient number of ovaries and it takes a lot of time and effort for the recovery of oocytes matured in vivo by ovum pickup. It was reported that the bovine cytoplast could support the remodelling of equine donor cells (Zhou et al. 2007 Reprod. Domest. Anim. 42, 243–247). The objectives of this study are 1) to monitor the early events of equine SCNT by interspecies SCNT (isSCNT) between bovine cytoplast and equine donor cell, and 2) to investigate the developmental competence of isSCNT embryos. Bovine oocytes were recovered from the follicles of slaughtered ovaries, and matured in TCM-199 supplemented with 10 mU mL–1 FSH, 50 ng mL–1 EGF, and 10% FBS at 39°C under 5% CO2 in air for 22 h. Fibroblasts derived from bovine or equine skin tissues were synchronized at G0/G1 stage by contact inhibition for 72 h. After IVM, oocytes with polar body were enucleated and electrically fused with equine or bovine skin fibroblasts (1.0 kV cm–1, 20 μs, 2 pulses). Fused couplets were activated with 5 μM ionomycin for 4 min followed by 5 h culture in 10 μg mL–1 cycloheximide (CHX) and/or 2 mM 6-DMAP, and cultured in modified synthetic oviduct fluid (mSOF) at 39°C under 5% CO2, 5% O2, and 90% N2 for 7 days. All analyses were performed using SAS (version 9.1; SAS Institute, Cary, NC, USA). The cleavage rate of isSCNT embryos derived from equine cell was not different (252/323, 78.7%; P = 0.94) from that of SCNT embryos derived from bovine cell (230/297, 79.2%). However, the rate of isSCNT embryos developed to over 8-cell stage was lower (3.3%; P < 0.0001) than that of bovine SCNT embryos (39.4%), and total cell number of isSCNT embryos developed to over 8-cell stage was lower (17.5, n = 12; P < 0.0001) than that (80.8, n = 110) of bovine SCNT embryos. Also, the rate of blastocyst formation of isSCNT embryos (0/323; 0.0%) was lower (P < 0.0001) than that of bovine SCNT embryos (83/297; 29.3%). Meanwhile, reconstructed oocytes for isSCNT were fixed at 8 h after activation to investigate the formation of pseudo-pronucleus (PPN) after post-activation treatment with CHX or CHX+6-DMAP. The ratio of oocytes with single PPN after treatment with CHX+6-DMAP (26/35; 74.3%) was not different (P = 0.63) from that of oocytes treated with CHX (24/36; 68.1%). Although isSCNT embryos derived from bovine cytoplast and equine donor cell could not develop to more than the 16-cell stage, it is believed that the results of this isSCNT study could be used for the preliminary data regarding the reprogramming of donor cell in equine SCNT.


2007 ◽  
Vol 19 (1) ◽  
pp. 166
Author(s):  
X. J. Yin ◽  
H. S. Lee ◽  
E. G. Choi ◽  
X. F. Yu ◽  
B. H. Choi ◽  
...  

Domestic cats are a useful research model to develop assisted reproductive technologies for the conservation of endangered felids. Previously, we produced cloned offspring derived from somatic cell nuclear transfer of ear skin fibroblasts obtained from a deaf, odd-eyed, male Turkish Angora. The aim of this study was to assess the cloning efficiency of the fibroblasts derived from a cloned cat. Fibroblast cell lines were established from 6-mm skin biopsies taken from a deaf, odd-eyed, male Turkish Angora and his clone. The protocol for nuclear transfer was described previously (Yin et al. 2005 Reproduction 129, 245–249). Briefly, cumulus cells were removed from the ova by gently pipetting them into TCM-199 supplemented with 0.1% hyaluronidase. The denuded oocytes were then cultured in TCM-199 supplemented with 0.2 �g mL-1 demecolcine for 1 h and placed into TCM-199 containing 5 �g mL-1 cytochalasin B and 0.2 �g mL-1 demecolcine. The first polar body and protruded chromatin plate were removed with a beveled micropipette. Micromanipulation was used to place a single donor cell nucleus into the perivitelline space of enucleated ova. The ovum-cell couplets were fused and pulse activated. The activated couplets were cultured in 500 �L of CRI medium supplemented with 0.3% BSA for 2 days. The cleaved embryos were cultured in CRII medium supplemented with 10% FBS for 5 days. The cleavage and blastocyst development rates were 38.5% and 3.5% for second generation cloned embryos. A total of 310 second generation cloned embryos were transplanted to 9 surrogates, and 2 pregnancies at 30 days were determined by ultrasonography. One pregnancy was aborted at 40 days of gestation; the second pregnancy continued. These results indicate that the serial cloning of a cat can be generated efficiently up until pregnancy. This work was supported by KOSEF (grant #M10525010001-05N2501-00110).


2007 ◽  
Vol 19 (1) ◽  
pp. 142
Author(s):  
K. Inoue ◽  
N. Ogonuki ◽  
H. Miki ◽  
S. Noda ◽  
S. Inoue ◽  
...  

Although cloning animals by somatic cell nuclear transfer is generally an inefficient process, use of appropriate donor cell types may improve the cloning outcome significantly. Among the donor cells tested so far, mouse embryonic stem cells have given the best efficiency in terms of the development of reconstructed embryos into offspring. In this study, we examined whether 2 in vitro-produced pluripotent stem cells—neural stem cells (NSCs) and mesenchymal stem cells (MSCs)—could be better nuclear donors than other differentiated cells. Embryos were reconstructed by transfer of nuclei from NSCs or MSCs with full potential for differentiation in vitro. Most (76%) of the 2-cell NCS embryos developed to the 4-cell stage; 43% implanted and 1.6% developed to term after transfer to pseudopregnant recipients. These rates were very similar to those of embryos cloned from fibroblast cell nuclei. Interestingly, in the patterns of zygotic gene expression, NSC embryos were more similar to in vitro-fertilized embryos than fibroblast cloned embryos. By contrast, embryos reconstructed using MSC nuclei showed lower developmental ability and no implantation was obtained after embryo transfer. Chromosomal analysis of the donor MSCs revealed very high frequencies of monosomy and trisomy, which might have caused the very poor post-implantation development of embryos following nuclear transfer. Thus, in vitro-produced pluripotent cells can serve as donors of nuclei for cloning mice, but may be prone to chromosomal aberrations leading to a high rate of cloned embryo death.


2014 ◽  
Vol 26 (1) ◽  
pp. 136
Author(s):  
T. Somfai ◽  
K. Kikuchi ◽  
K. Yoshioka ◽  
F. Tanihara ◽  
H. Kaneko ◽  
...  

Development to term of vitrified porcine follicular oocytes is reported in the present study. Immature cumulus-oocyte complexes (COC) were collected from slaughtered prepubertal gilts and were vitrified according to our method published recently (Somfai et al. 2013 J. Reprod. Dev., in press). Briefly, after pretreatment with 7.5 μg mL–1 of cytochalasin B (CB) for 30 min in modified NCSU-37 (a basic medium, BM) at 38.5°C, groups of 88 to 121 COC were equilibrated in a mixture of 2% ethylene glycol (EG), 2% propylene glycol (PG), and 7.5 μg mL–1 CB for 13 to 15 min. Then, COC were washed in vitrification solution (17.5% EG, 17.5% PG, 5% polyvinyl pyrrolidone, and 0.3 M trehalose in BM) and then dropped with 2 μL of vitrification solution onto the surface of aluminum foil floating on liquid nitrogen (LN2). Microdroplets (each containing 10–25 COC) were transferred into cryotubes. After storage in LN2 for 2 to 4 weeks, the oocytes were warmed by dropping the microdroplets directly into 2.5 mL of warming solution (0.4 M trehalose in BM) kept in a 35-mm Petri dish on a 42°C hotplate for less than 1 min. Then, the warming dish was placed on a 38°C hotplate and COC were consecutively transferred for 1-min periods into BM containing 0.2, 0.1, or 0.05 M trehalose at 38°C. The COC were matured in vitro for 44 h using porcine oocyte medium (POM) supplemented with 10% follicular fluid (Yoshioka et al. 2008 J. Reprod. Dev. 54, 208–213). Then, oocytes were denuded, and their live/dead status and nuclear maturation were determined by their morphology and the presence of the first polar body, respectively. To assess their developmental competence, vitrified and non-vitrified (control) oocytes were in vitro fertilized (IVF; Kikuchi et al. 2002 Biol. Reprod. 66, 1033–1041) and then in vitro cultured in porcine zygote medium-5 (PZM-5; Yoshioka et al. 2008 J. Reprod. Dev. 54, 208–213). Blastocyst rates were recorded on Days 5, 6, and 7 of culture (Day 0 = the day of IVF). The experiment was replicated 4 times. Data were analysed with 1-way ANOVA and the Tukey test. The results revealed that 86.4% (364/424) of oocytes survived after vitrification, which was significantly lower (P < 0.05) than that of controls [100% (326/326)]. Live oocytes in vitrified and control groups did not differ statistically in terms of nuclear maturation (63.9 v. 65.3%). Blastocyst rates of surviving vitrified oocytes were significantly lower compared with controls on Days 5 (2.4 v. 12.7%), 6 (4.8 v. 17.6%), and 7 (5.6 v. 18.4%). To test their ability to develop to term, 16 and 27 blastocysts on Day 5 developing from vitrified COC were transferred into 2 recipients. Both recipients became pregnant and farrowed a total of 10 live piglets (4 and 6 piglets, respectively). These data demonstrate that large groups of immature porcine oocytes could be cryopreserved by this method showing high survival and maturation rates. Furthermore, despite a low rate of blastocyst development, transfer of Day-5 blastocysts generated from vitrified oocytes resulted in piglet production for the first time in the world. Partially supported by JSPS and HAS under the Japan-Hungary Research Cooperative Program.


2015 ◽  
Vol 27 (1) ◽  
pp. 113
Author(s):  
L. T. K. Do ◽  
Y. Sato ◽  
M. Taniguchi ◽  
T. Otoi

The developmental ability of interspecies somatic cell nuclear transfer (iSCNT) embryos decreases as the taxonomic distance between the donor and recipient species increases. Treatment of cat iSCNT embryos using bovine oocytes with 50 nM of trichostatin A (TSA) improves in vitro embryonic development (Wittayarat et al. 2013 Cell. Reprogram. 15, 301–308). This study investigated whether the TSA treatment effects differ between the development of cat iSCNT embryos reconstructed with porcine and bovine oocytes. Porcine and bovine cumulus-oocyte complexes were in vitro matured for 44 h and 24 h, respectively. After cumulus cell removal, enucleation was performed by aspiration of the metaphase II plate and the first polar body using a piezo-driven pipette. A cat fibroblast cell was then injected into cytoplasm of successfully enucleated oocyte. Reconstructed cybrids were electrically activated by a single 1.5 kV cm–1 pulse for 100 µs (pig-cat embryos), or a 2.3 kV cm–1 pulse for 30 µs (cow-cat embryos). Pig-cat and cow-cat embryos were cultured in porcine zygote medium (PZM)-5 and modified synthetic oviducal fluid medium (mSOF), respectively. After electrical activation, pig-cat and cow-cat embryos were cultured in medium supplemented with 5 µg mL–1 cytochalasin B + 50 nM TSA (TSA group) or without TSA (control group), and the cow-cat embryo medium was also supplemented with 10 µg mL–1 cycloheximide. After 2 h, TSA-treated pig-cat and cow-cat embryos were incubated in medium supplemented with TSA for 22 h, followed by 48 h incubation without TSA. Pig-cat and cow-cat control embryos were cultured in medium without TSA for 70 h after activation. Then, all pig-cat and cow-cat embryos were cultured in porcine blastocyst medium (PBM) or mSOF medium supplemented with 5% fetal bovine serum, respectively, for 5 additional days. Four to seven replicates were performed for each experiment. Data were analysed using Student's t-test. For pig-cat embryos, no difference was observed in cleavage rates between both groups, but development to the blastocyst stage was higher in the pig control group (n = 147, 8.0%) than that of pig TSA group (n = 131, 0.7%; P < 0.05). In contrast, development to the blastocyst stage in cow-cat embryos was not observed in the cow control group (n = 125, 0%), but it was observed in cow TSA group (n = 136, 3.7%). These results indicate that TSA treatment effects are species-specific, but those effects remain to be clarified.


Reproduction ◽  
2002 ◽  
pp. 455-465 ◽  
Author(s):  
YH Choi ◽  
CC Love ◽  
LB Love ◽  
DD Varner ◽  
S Brinsko ◽  
...  

This study was undertaken to evaluate the development of equine oocytes in vitro and in vivo after intracytoplasmic sperm injection (ICSI) with either fresh or frozen-thawed spermatozoa, without the use of additional activation treatments. Oocytes were collected from ovaries obtained from an abattoir and oocytes classified as having expanded cumulus cells were matured in M199 with 10% fetal bovine serum and 5 microU FSH ml(-1). After 24-26 h of in vitro maturation, oocytes with a first polar body were selected for manipulation. Fresh ejaculated stallion spermatozoa were used for the experiment after swim-up for 20 min in sperm-Tyrode's albumen lactate pyruvate. Frozen-thawed spermatozoa from the same stallion were treated in a similar way. Spermatozoa were immobilized and injected into the oocytes using a Piezo drill. Presumptive zygotes were cultured in G1.2 medium for 20 or 96 h after the injection was administered, or were transferred to the oviducts of recipient mares and recovered 96 h later. In addition, bovine oocytes with first polar bodies were injected with the two types of stallion spermatozoa and fixed 20 h after injection to examine pronuclear formation. Fertilization rate (pronucleus formation and cleavage) at 20 h after injection of spermatozoa was not significantly different between fresh and frozen-thawed sperm groups in either equine or bovine oocytes. Pronucleus formation after injection of spermatozoa into bovine oocytes was significantly higher than that for equine oocytes (P < 0.05). There were no significant differences in cleavage rate or average number of nuclei at 96 h between equine oocytes injected with fresh or frozen-thawed spermatozoa. However, embryos developed in vivo for 96 h had a significantly higher number of nuclei in both sperm treatments compared with those cultured in vitro. These results indicate that good activation rates may be obtained after injection of either fresh or frozen-thawed equine spermatozoa without additional activation treatment. Injection of frozen-thawed equine spermatozoa results in similar embryo development to that obtained with fresh equine spermatozoa. In vitro culture of equine zygotes in G1.2 medium results in a similar cleavage rate but reduced number of cells compared with in vivo culture within the oviduct. Bovine oocytes may be useful as models for assessing sperm function in horses.


Zygote ◽  
2003 ◽  
Vol 11 (4) ◽  
pp. 317-321 ◽  
Author(s):  
Sangho Roh ◽  
Jitong Guo ◽  
Nakisa Malakooti ◽  
John R. Morrison ◽  
Alan O. Trounson ◽  
...  

We report full-term development of nuclear transfer embryos following nuclear exchange at the 2-cell stage. Nuclei from 2-cell rat embryos were transferred into enucleated 2-cell embryos and developed to term after transfer to recipients (NT2). Pronuclear exchange in zygotes was used for comparison (NT1). Zygotes and 2-cell embryos were harvested from 4-week-old female Sprague-Dawley rats. Nuclear transfer was performed by transferring the pronuclei or karyoplasts into the perivitelline space of recipient embryos followed by electrofusion to reconstruct embryos. Fused couplets were cultured for 4 or 24 h before being transferred into day 1 pseudopregnant recipients (Hooded Wistar) at the 1- or 2-cell stage. In vitro culture was also carried out to check the developmental competence of the embryos. In vitro development to the blastocyst stage was not significantly different between the two groups (NT1, 34.3%; NT2, 45.0%). Two of three recipients from NT1 and two of five recipients from NT2 became pregnant. Six pups (3 from NT1, 3 from NT2) were delivered from the four foster mothers. Three female pups survived; 2 from NT1 and 1 from NT2. At 2 months of age these pups appeared healthy, and were mated with Sprague-Dawley males. One rat derived from NT1 delivered 15 pups (5 males, 10 females) as did the rat from NT2 (7 males, 8 females). Our results show that by using karyoplasts from 2-cell stage embryos as nuclear donors and reconstructing them with enucleated 2-cell embryos, healthy rats can be produced.


Author(s):  
Luis Aguila ◽  
Favian Treulen ◽  
Jacinthe Therrien ◽  
Ricardo Felmer ◽  
Martha Valdivia ◽  
...  

The efficiency of producing embryos using in vitro technologies in livestock species rarely exceeds the 30 to 40% threshold, indicating that the proportion of oocytes that fail to develop after in vitro fertilization and culture is considerably large. Considering that the intrinsic quality of the oocyte is one of the main factors affecting blastocyst yield, the precise identification of non-invasive cellular or molecular markers that predict oocyte competence is of major interest to research and practical applications. The aim of this review was to explore the current literature on different non-invasive markers associated with oocyte quality in mammalian species, with an emphasis on the bovine model. Apart from some controversial findings, the presence of cycle-related structures in ovaries, a follicle size between 6 and 10 mm, large number of surrounding cumulus cells, slightly expanded investment without dark areas, large oocyte diameter (&amp;gt;120 microns), dark cytoplasm, and the presence of a round and smooth first polar body have been associated to better competence. In addition, the combination of oocyte and zygote selection by BCB test and spindle imaging have the potential to further optimize the identification of oocytes with better developmental competence for in vitro-derived technologies in livestock species.


2004 ◽  
Vol 16 (2) ◽  
pp. 270
Author(s):  
I. Lagutina ◽  
G. Lazzari ◽  
C. Galli

The completion of porcine oocyte nuclear maturation (MII) in vitro, characterized by the time of polar body extrusion, starts at about 32h of maturation and lasts more than 12h. This leads to the simultaneous presence in the population of matured oocytes with differing abilities to be activated. We investigated age-dependent changes in pig oocyte maturation, activation and development in SOFaa in response to electric impulse (EL) in the presence of cytochalasin B (CB) and EL in combination with cycloheximide and cytochalasin B (EL+CHX+CB). Oocytes were matured in TCM 199 with 10% FCS, cysteine, LH, FSH (Pergovet, Serono, Geneva, Switzerland) for 36h and then decumulated. Matured oocytes were activated at 40 and 44h by double pulse of 30μs DC 1, 5kVcm−1 and cultured in 5μgmL−1 CB for 4h or by EL followed by incubation in 10μgmL−1 CHX+5μgmL−1 CB for 4h. According to the MII-age before activation oocytes were divided into 2 age classes: 3–7 and 7–11h after polar body extrusion. Embryos were cultured in SOFaa in 5% CO2, 5% O2 at 38.5°C. The rates of cleavage, blastocyst formation and cell number of BL on Day 7 (BLD7) were recorded. Our results showed that the average rate of maturation at 44h was 72% (n=1377). About 50% and 87% of oocytes, that eventually matured, extruded the polar body at 37 and 40h, respectively. The average cell number of BLD7 developed in SOFaa was 80±36 (n=52) and was not affected by activation protocol. Seventy-nine and 27% of BL had more than 50 and 100 cells per BL, respectively. Porcine oocytes activated by EL acquired their developmental competence gradually, achieving the highest rates of cleavage and blastocyst formation 7h after polar body extrusion. By contrast, oocytes activated by EL+CHX+CB showed their maximal developmental competence earlier (3–7h group). In conclusion, we demonstrate that electric impulse in combination with CHX+CB treatment permits earlier efficient activation of porcine oocytes (3–7h after polar body extrusion).


2006 ◽  
Vol 18 (2) ◽  
pp. 286 ◽  
Author(s):  
T. Suh ◽  
S. Purcell ◽  
G. Seidel Jr

Ovarian follicular development in mares during the transitional period before the breeding season leads to an accumulation of antral follicles of various sizes. The quality of oocytes at this stage may be compromized until the first seasonal ovulation. In this study, we evaluated the developmental competence of oocytes recovered from transitional and cyclic mares, and the effect of zygote activation after intracytoplasmic sperm injection (ICSI). A 2 × 2 × 2 factorial experiment consisting of oocytes from transitional and cyclic mares, two follicle sizes (10 to 20 and 20+ mm), and two treatments (control and activated) was conducted. Follicular oocytes of 14 mares were aspirated in March and April (transitional) and May to July (cyclic) five times per each period at 10-day intervals, without use of hCG. Oocytes aspirated from mares were matured in vitro in a defined medium similar to SOF plus FSH, LH, epidermal growth factor (EGF), insulin-like growth factor (IGF), estradiol (E2), prostaglandin (P4) and 10% FCS, for 30 ± 1 h under 5% CO2 in air at 38.5°C; oocytes with a first polar body were used for ICSI. Motile sperm from frozen-thawed semen were used for sperm injection with a piezo-driven pipet. For activation after ICSI, presumptive zygotes were cultured in G1.3 containing 0.02 µM phorbol 12-myristate 13-acetate (PMA) for 2 h, and then in 2 mM 6-dimethylaminopurine (6-DMAP) for 3 h under 6% CO2 in air at 38.5°C. Zygotes were cultured in 50 µL drops of DMEM/F12 containing 10% FCS for 9 days at 38.5°C in 5% CO2/5% O2/90% N2. Medium was replaced every 3 days. Cleavage and blastocyst rates were calculated based on non-degenerating injected oocytes. Data were analyzed by Fisher's exact test. A total of 115 and 78 oocytes were recovered from cyclic and transitional mares. Average maturation rates to MII in the respective groups were 76.5 and 65.4%, respectively (P < 0.07), and those of 10 to 20 and 20+ mm follicle groups were 70.6 and 80.0%, respectively (P > 0.05). The average cleavage rate in cyclic mares was higher than in transitional mares, and that of the activated group averaged over follicle sizes was higher than that of controls (P < 0.05; Table 1); those of 10 to 20 and 20+ mm follicle groups were not different (P < 0.05; Table 1). Blastocyst rates per oocyte within main effects were not different (P < 0.05; Table 1). Oocytes from transitional mares had lower cleavage rates than those of cyclic mares, but blastocyst development was similar. Activation of zygotes clearly improved cleavage rates of in vivo-derived immature equine oocytes after ICSI. Table 1. Main effect means of responses after ICSI


Sign in / Sign up

Export Citation Format

Share Document