16 PROGESTERONE RELEASE PATTERNS FROM CUE-MATE IN COMPARISON TO OTHER INTRAVAGINAL PROGESTERONE-RELEASING DEVICES IN LACTATING DAIRY COWS

2007 ◽  
Vol 19 (1) ◽  
pp. 126 ◽  
Author(s):  
D. Rogan ◽  
M. F. Martinez ◽  
G. A. Bo ◽  
P. Chesta ◽  
F. Feresin ◽  
...  

Various intravaginal progesterone-releasing devices are commercially available and each is impregnated with different amounts of progesterone. An experiment was designed to characterize plasma progesterone release profiles from Cue-Mate in comparison with other commercially available progesterone-releasing devices. Cycling, lactating Holstein cows (n = 60; BCS between 2.0 and 3.0 out of 5) from commercial dairy farms in Argentina were used in 2 replicates. All cows received 2 injections of D+ cloprostenol (PGF, Bioprost-D�; Biotay, Buenos Aires, Argentina) 14 days apart and were randomly assigned to one of four groups to receive intravaginal devices as follows: Cue-Mate (1.56 g progesterone; Bioniche Animal Health, A/Asia Pty, Armidale, Australia; n = 10), DIB (1 g progesterone; Syntex SA, Argentina; n = 10), CIDR with 1.9 g progesterone (Pfizer Salud Animal S.A., Buenos Aires, Argentina; n = 10), or CIDR with 1.38 g progesterone (Pfizer Animal Health, Groton, CT, USA; n = 10). All devices were inserted 24 hours after the second PGF and were left in place for 31 days. Blood samples were taken for progesterone analysis at 6-hour intervals for the first 24 hours, then daily for a week, and every 2 days for an additional 25 days. Plasma progesterone concentrations were measured with a modified human double-antibody RIA kit (DPC Coat-A-Count�; Diagnostic Products Corporation, Los Angeles, CA, USA). Cows were observed twice daily to confirm that vaginal inserts were still in place. Time-series hormone data were analyzed using the MIXED procedure for repeated measures (SAS Institute, Inc., Cary, NC, USA). Main effects of device and time, the highest mean concentration of progesterone, and the mean day on which this occurred were compared by a protected LSD test. There was no evidence of cow discomfort with any of the vaginal devices, and loss rates did not differ. There was an effect of group (P < 0.001) and day (P < 0.001) for progesterone concentrations, but there was no interaction (P = 0.89). Peak concentrations of progesterone (ng mL-1) did not differ among groups (Cue-Mate: 5.0 � 1.1; DIB: 3.9 � 0.6; 1.9-g CIDR: 4.6 � 0.6; 1.38-g CIDR: 3.7 � 0.4; P = 0.51). Mean (� SEM) concentrations of progesterone over the 31-day insertion period differed between 1.9-g CIDR (1.8 � 0.2 ng mL-1) and DIB (1.5 � 0.1 ng mL-1, P < 0.006), with Cue-Mate (1.5 � 0.2 ng mL-1) and 1.38-g CIDR (1.6 � 0.1 ng mL-1) intermediate and not different from either. When data were evaluated from insertion until Day 7, mean plasma progesterone concentrations did not differ among groups (Cue-Mate: 2.2 � 0.2 ng mL-1; DIB: 2.2 � 0.1 ng mL-1; 1.9-g CIDR: 2.6 � 0.2 ng mL-1; 1.38-g CIDR: 2.1 � 0.1 ng mL-1). However, progesterone concentrations from insertion until Day 21 were higher (P < 0.03) in cows with a 1.9-g CIDR (2.1 � 0.1 ng mL-1) than in those with a DIB (1.6 � 0.1 ng mL-1) or a 1.38-g CIDR (1.6 � 0.1 ng mL-1), with Cue-Mate (1.7 � 0.1 ng mL-1) intermediate and not different. Based on progesterone release patterns, it was concluded that Cue-Mate intravaginal devices can be used in protocols for synchronization of estrus and ovulation as with other progesterone-releasing devices.

2006 ◽  
Vol 18 (2) ◽  
pp. 115
Author(s):  
H. Davis ◽  
M. Colazo ◽  
M. Rutledge ◽  
J. Small ◽  
J. Kastelic ◽  
...  

Two experiments were conducted to determine the effects of plasma progesterone (P4) concentrations on LH release and ovulation in beef heifers and lactating beef cows given gonadotropin-releasing hormone (GnRH). Previously autoclaved, once-used CIDR inserts (Colazo et al. 2004 Anim. Reprod. Sci. 81, 25-34) were used for experimental purposes to induce differential plasma progesterone concentrations. In Experiment 1, postpubertal heifers received 25 mg of dinoprost i.m. (prostaglandin F (PGF); Lutalyse; Pfizer Animal Health, Montreal, Quebec, Canada). On Day 4 (estrus = Day 0), heifers were randomly assigned (10/group) to receive no treatment (control) or 1 or 2 autoclaved once-used CIDR (Pfizer Animal Health) inserts (1CIDR and 2CIDR, respectively). On Day 5, heifers in the 1CIDR group were given PGF twice 12 h apart. On Day 6, all heifers received 100 �g of GnRH i.m. (Cystorelin; Merial Canada, Inc., Victoriaville, Quebec, Canada). Once daily on Days 4 to 9, a blood sample was collected and ultrasonography was performed. On Day 6, heifers in the control (3.0 � 0.4 ng/mL; mean � SD) and 1CIDR groups (3.0 � 0.3 ng/mL) had lower (P < 0.01) plasma progesterone concentrations than those in the 2CIDR group (5.7 � 0.4 ng/mL). However, the diameter of the dominant follicle was larger (P < 0.001) in heifers in the control and 1CIDR groups than in the 2CIDR group (12.1 � 1.0, 11.5 � 0.7, and 10.1 � 0.7 mm, respectively). More (P < 0.01) heifers ovulated in response to GnRH in the control and 1CIDR groups than in the 2CIDR group (10/10, 9/10, and 3/10, respectively). In Experiment 2, ultrasound-guided follicular ablation (FA) was performed (to synchronize ovarian follicular wave emergence) 4 to 6 days after estrus in 20 postpubertal heifers and 20 mature lactating cows. Cattle were randomly and equally assigned to receive an autoclaved, once-used CIDR, either with no further treatment (High-P4) or with two PGF treatments 12 h apart (Low-P4) given after FA. All cattle received 100 �g of GnRH either 6 days after FA or the day after the dominant follicle reached 9 mm in diameter. Ultrasonography was performed daily (from 4 days after FA to ovulation or to 3 days after GnRH treatment). In three cows and three heifers per group, blood samples were collected every 30 min for 12 h after GnRH. The dominant follicle at GnRH treatment was larger in cows than heifers (11.0 � 1.1 vs. 10.3 � 0.9 mm, respectively; P = 0.05) and tended to be smaller in the High-P4 group vs. the Low-P4 group (10.3 � 1.0 vs. 11.0 � 1.0 mm; P = 0.06). Ovulatory response was not different (P = 0.9) between heifers (77.7%) and cows (78.9%), but combined for heifers and cows, was lower in High-P4 vs. Low-P4 cattle (61.1 vs. 94.7; P < 0.01). The GnRH-induced LH surge did not differ (P = 0.23) between cows and heifers, but it was lower and of shorter duration (P < 0.001) in the High-P4 group than in the Low-P4 group. In summary, higher plasma P4 concentrations resulted in decreased LH release and the proportion of cattle ovulating in response to GnRH treatment. There was no significant difference between heifers and cows in LH release or ovulatory response.


2006 ◽  
Vol 18 (2) ◽  
pp. 112
Author(s):  
M. Aviles ◽  
L. Cutaia ◽  
I. Videla Dorna ◽  
M. Aba ◽  
G. A. Bo

An experiment was designed to determine plasma progesterone (P4) concentrations in ovariectomized cows treated with either CIDR-B devices (Pfizer Animal Health, Hamilton, New Zealand) impregnated with 1.9 g of P4 or DIB devices (Syntex, Argentina) impregnated with 0.5 or 1.0 g of P4. Fifteen ovariectomized beef cows, weighing 350 to 450 kg and with a body condition score (BCS) 2.5 to 3.0 out of 5 were used. All cows were ovariectomized 30 days before the beginning of the trial and had plasma P4 concentrations <1 ng/mL (measured by radioimmunoassay (RIA)) 10 days before the trial. On Day 0, cows were stratified by weight and randomly assigned to one of three treatment groups to receive intravaginal devices containing 0.5 g of P4 (DIB 0.5), 1 g of P4 (DIB 1.0), or 1.9 g of P4 (CIDR-B). Blood samples were taken 12 and 24 h after intravaginal device insertion and then every 24 h until device removal on Day 7. Jugular blood samples were drawn into heparinized tubes and centrifuged within 20 min of collection; the plasma was harvested, frozen, and stored at −10°C. Progesterone was measured in plasma samples using a commercial solid-phase RIA (Coat-a-count; Diagnostic Products Corp., Los Angeles, CA, USA). All of the samples were analyzed at one time and the intra-assay coefficient of variation was 13%. Plasma P4 concentrations were compared among treatments by calculating the area under the curve over time and testing for differences by ANOVA. Plasma P4 profiles were also analyzed by ANOVA for repeated measures. Analysis of plasma P4 profiles revealed a day effect (P < 0.001) but not a treatment effect (P > 0.13) or a day by treatment interaction (P > 0.16; Table 1). The area under the curve did not differ (P = 0.95) among groups (DIB 0.5: 2236.4 ng, DIB 1.0: 2164.6 ng, and CIDR-B: 2266.8 ng). In all treatments, plasma P4 profiles were characterized by a sudden increase in P4 concentrations within 12 h of device insertion and a gradual decrease during the following several days. It was concluded that the use of CIDR-B devices impregnated with 1.9 g of P4 or DIB devices impregnated with 1.0 or 0.5 g of P4 did not result in different plasma P4 concentrations in ovariectomized cows. Further studies are needed to confirm these results in lactating and dry intact (not ovariectomized) cattle. Table 1. Mean plasma P4 concentrations (ng/mL ± SEM) in ovariectomized cows treated with intravaginal devices containing 0.5 g (DIB 0.5), 1.0 g (DIB 1.0), or 1.9 g (CIDR-B) of P4*


1967 ◽  
Vol 55 (1) ◽  
pp. 91-96 ◽  
Author(s):  
Benno Runnebaum ◽  
Josef Zander

ABSTRACT Progesterone was determined and identified in human peripheral blood during the preovulatory period of the menstrual cycle, by combined isotope derivative and recrystallization analysis. The mean concentration of progesterone in 1.095 ml of plasma obtained 9 days before ovulation was 0.084 μg/100 ml. However, the mean concentration of progesterone in 1.122 ml of plasma obtained 4 days before ovulation was 0.279 μg/100 ml. These data demonstrate a source of progesterone secretion other than the corpus luteum. The higher plasma-progesterone concentration 4 days before ovulation may indicate progesterone secretion of the ripening Graafian follicle of the ovary.


2009 ◽  
Vol 21 (1) ◽  
pp. 243 ◽  
Author(s):  
P. W. Farin ◽  
K. M. Dowdall ◽  
J. E. Hicks ◽  
C. E. Farin ◽  
C. S. Whisnant

Follicle stimulating hormone (FSH) is usually administered in a series of intramuscular (IM) injections to induce multiple ovulations for embryo production in cattle and other species. The objective of this study was to determine the superovulatory response of dairy cows to subcutaneous (SC) administration of FSH using a reduced number of injections in combination with a progesterone-releasing device. Eighteen non-lactating Holstein cows initially received 25 mg Prostaglandin F2α IM (PGF; Lutalyse; Pfizer Animal Health, Groton, CT, USA) on Day –7. All cows then received an intravaginal progesterone-releasing device (CIDR-B, 1.38 mg progesterone; Pfizer Animal Health) on Day 0, and 100 μg GnRH IM (Cystorelin; Merial Ltd, USA) on Day 2. Cows were randomly assigned to receive a total of 400 mg (20 mL) of FSH (Folltropin-V; Bioniche Animal Health, USA) either by IM injection (IM Group, n = 9 cows) given at 12 h intervals on Days 4 (60 mg, 60 mg), 5 (55 mg, 55 mg), 6 (45 mg, 45 mg) and 7 (40 mg, 40 mg), or by SC injection (SC Group, n = 9 cows) given at 24 h intervals on Days 4 (140 mg), 5 (140 mg) and Day 6 (120 mg). On Day 7, CIDR-B inserts were removed and cows received two 25 mg PGF IM injections given 12 h apart. Cows were artificially inseminated at 12 and 24 h after standing estrus. Blood samples were obtained from all cows at 0, 2, 4, 8, 12, 24, 36, 48, 60, 72, and 84 h after the first FSH injection for determination of serum FSH concentrations. Ovarian follicles and CL were monitored using ultrasonography on Days 4, 7, and 16. Embryos were recovered non-surgically on Day 16 (7 days after estrus). The effects of treatment on follicular response and embryo yield were analyzed by Wilcoxon test, and the response of cows to treatment was analyzed by chi-square test. The effects of treatment on concentrations of serum FSH were analyzed using ANOVA for repeated measures. There was no effect (P > 0.05) of route of FSH administration on the concentrations of serum FSH at any time point. The superovulatory response of cows to treatment, defined as greater than 2 CL per cow, did not differ (P > 0.05) between the IM (77.8%, 7/9 cows) and SC (88.9%, 8/9 cows) Groups. There was also no difference (P > 0.05) between the IM and SC Groups for the number of 5 to 10 mm follicles prior to FSH treatment (mean ± SEM; 0.6 ± 0.2 v. 0.9 ± 0.4), the total number of follicles after FSH treatment (12.4 ± 1.6 v. 12.7 ± 2.2) or the number of CL at embryo recovery (6.4 ± 1.5 v. 10.4 ± 2.1). Similarly, there were no differences (P > 0.05) between the IM and SC Groups for total number of oocytes/embryos (5.6 ± 2.6 v. 13.0 ± 4.3), transferable embryos (Grade 1, 2, 3; 3.0 ± 1.4 v. 6.1 ± 2.9) or Grade 1 embryos (2.9 ± 1.4 v. 4.3 ± 2.5). In conclusion, administration of FSH using 3 SC injections in combination with a progesterone-releasing device was an effective method for superovulation of Holstein cows. Supported by USDA Animal Health Formula Funds and the State of North Carolina.


1963 ◽  
Vol 26 (1) ◽  
pp. 65-73 ◽  
Author(s):  
M. G. BRUSH

SUMMARY Plasma levels of progesterone and 20 α-hydroxypregn-4-en-3-one have been studied after intravenous (i.v.) and intramuscular (i.m.) injections of progesterone in sheep. I.v. injected progesterone was removed from the bloodstream very rapidly and it was necessary to give 50 mg. before it was possible to detect progesterone at times up to 10 min. after the injection. With 100 mg. amounts of progesterone injected i.v. the mean concentration in samples taken up to 10 min. after the injection was 34·7 μg./100 ml. plasma (range 4–110 μg./100 ml. in 9 samples), but after 1 hr. the mean level was 2·2 μg./100 ml. plasma (range 0–10 μg./100 ml. in 10 samples). The concentrations of 20 α-hydroxypregn-4-en-3-one were usually, but not always, less than those of progesterone. When progesterone was given by i.m. injection it was not possible to establish detectable blood levels. The effect of the injection vehicle was also studied for each injection route. Some new modifications of Short's method (1958) for the determination of plasma progesterone are described and discussed.


1972 ◽  
Vol 52 (1) ◽  
pp. 23-36 ◽  
Author(s):  
G. D. THORBURN ◽  
W. SCHNEIDER

SUMMARY Progesterone concentrations in the peripheral plasma of goats were measured by a protein-binding assay. The mean concentration was extremely low on the day of oestrus (0·2 ng/ml) and was not significantly different from that found in anoestrous or ovariectomized animals. The concentration increased to a maximum of 4 ng/ml on about day 10 of the 21-day cycle, and decreased rapidly during the last 3 days of the cycle. Plasma progesterone concentration during early pregnancy (2·5–3·5 ng/ml) was similar to the luteal phase value and remained steady from day 8 to day 60. Between days 60 and 70 there was a secondary increase in progesterone concentration which was maintained at this increased level (4·5–5·5 ng/ml) until just before parturition. In twin-bearing animals, the secondary increase was greater. Progesterone concentration decreased rapidly during the 1–2 days preceding parturition, but the concentration was still quite high on the day of parturition (1·25 ng/ml). The progesterone concentration in peripheral plasma was markedly increased during anaesthesia and the operation. After bilateral ovariectomy of the pregnant goat, peripheral progesterone concentration fell rapidly from 9 to 2·5 ng/ml during the first ½ h and then more slowly during the next 5–6 h. The animals aborted 36–48 h later. A consistent positive arterio—venous difference for progesterone was observed across the pregnant uterus in two unanaesthetized goats. These results indicate that the ovary is the main site of progesterone production in the pregnant goat and that production by the placenta is small and unlikely to influence the level of this hormone in the maternal circulation.


2009 ◽  
Vol 21 (1) ◽  
pp. 171
Author(s):  
M. E. F. Oliveira ◽  
I. C. C. Santos ◽  
J. S. P. Pieroni ◽  
R. M. Ferreira ◽  
M. F. Cordeiro ◽  
...  

The aim this study was to evaluate the effect of the addition of LH in superovulatory response and embryo production in Santa Inês sheep. Ten donors with 60.3 ± 10.7 kg and BCS of 3.9 ± 0.3 were superovulated in a cross-over design, with a 60-day interval. Estrus was synchronized with a progesterone-releasing intravaginal device (CIDR™; Pfizer Animal Health, Brazil) inserted on Day 0 and replaced by a new one on Day 7, that was maintained to Day 14. Two doses of 37.5 g of D-cloprostenol (Prolise™, Arsa, Buenos Aires, Argentina) were administered, on Days 7 and 14. Donors also receive 256 mg of pFSH (Folltropin™, Bioniche, Belleville, ON, Canada) in 8 decreasing doses, starting on Day 12. On Day 14, all females received 200 IU of eCG (Novormon ™, Syntex, Argentina). On Day 15, the animals were homogeneously allocated in 1 of 2 groups: Control (GC, n = 10) and treated (G-LH, n = 10). Ewes in GC did not receive exogenous LH, whereas ewes in G-LH were treated with 7.5 mg of LH (Lutropin™, Bioniche), on Day 15. All females were inseminated by laparoscopy, with frozen–thawed semen, 42 and 48 h after CIDR removal. On Day 21, the embryos were surgically collected. The superovulatory response was classified in scores: (0) 4 or fewer CL; (1) between 5 and 10 CL, and (2) 11 or more CL. Means were compared using Kruskal-Wallis test and percentages using chi-square (P < 0.05). Most of donors (70%, 7/10) from G-LH presented a superovulatory response classified as score 2, and the remaining (30%, 3/10) as score 1, whereas, half of the controls were classified as score 2 and half as score 1. Ovulation rate tended to be greater in G-LH (135/158, 85.4% v. 105/135, 77.7%, P = 0.08). The number of CL (mean ± SD) was 10.5 ± 3.8 in GC and 13.5 ± 4.84 in G-LH, but was not statistically different. The number of anovulatory follicles (AF) did not differ between groups (GC: 3.0 ± 3.2; G-LH: 2.3 ± 1.6), but the proportion of AF tended to decrease in G-LH (30/135, 22.2% v. 23/158, 14.5%, P = 0.08). Considering embryo production, there was no difference between GC and G-LH (P > 0.05) related to number of recovered ova/embryos (6.1 ± 4.6 v. 8.4 ± 5.2), viable embryos (3.8 ± 4.3 v. 4.2 ± 5.2), unfertilized (1.7 ± 3.4 v. 2.0 ± 2.9) and degenerated embryos (0.7 ± 0.7 v. 2.2 ± 2.9), respectively. Data showed that the addition of LH tended to increase ovulation rate and to decrease the proportion of AF, but did not affect the number of viable embryos.


2012 ◽  
Vol 24 (1) ◽  
pp. 115
Author(s):  
C. A. Messerschmidt ◽  
F. M. Abreu ◽  
L. H. Cruppe ◽  
M. V. Biehl ◽  
M. L. Day ◽  
...  

The objective of this study was to determine the effects of meclofenamic acid, a nonsteroidal anti-inflammatory, on luteal function of beef cattle. A total of 18 Angus cows, aged between 2 and 3 years old, were enrolled in the experiment. All cows were synchronized using a 5-day CIDR protocol. Briefly, cows received 100 μg of gonadorelin diacetate tetrahydrate (GnRH; Cystorelin®, Merial, Athens, GA, USA) and a controlled internal drug release insert (CIDR; Eazi-BreedTM CIDR®, Pfizer Animal Health, New York, NY, USA). Five days later, the CIDR was removed and 50 mg of dinoprost (Lutalyse®, Pfizer Animal Health) was administered intramuscularly. Oestrus was determined by twice daily observations of mounting behaviour and tail painting scores (day of oestrus = Day 0). At 72 h after dinoprost, a second dose of gonadorelin (100 μg, IM) was administered. On Day 14, cows were randomly assigned to the following treatment groups: 1) control: 10 mL of saline solution administered IM; 2) systemic: 2 g of meclofenamic acid administered IM; and 3) oral: 2 g of meclofenamic acid administered orally. Cows were treated once daily for 11 days (i.e. until Day 24) and no adverse reactions were observed. Blood sampling and ovarian ultrasonography were performed every 72 h from Day 0 until Day 12 and then every 48 h until the end of the study. Serum progesterone concentrations were determined by radioimmunoassay and were used to determine functional luteolysis (i.e. progesterone <1 ng mL–1). Ovaries were evaluated for the presence of a corpus luteum and to evaluate follicular growth and subsequent ovulation. One-way ANOVA was used to compare the day of peak progesterone concentration, lifespan of the corpus luteum and the length of the oestrous cycle between groups. Significance was set at P < 0.05 and data are presented as means ± standard error of the mean (Table 1). There were no effects of meclofenamic acid administration on any of the parameters evaluated (P > 0.05). In conclusion, meclofenamic acid administration did not affect luteal function in our study. Potentially, higher doses of meclofenamic acid may be necessary to inhibit prostaglandin synthesis and prevent luteolysis. Table 1.Effects of meclofenamic acid administration on the day of peak progesterone concentration, lifespan of the corpus luteum (CL) and the length of oestrous cycle in beef cows (mean ± standard error of the mean) Funding was provided by The Ohio State University, College of Veterinary Medicine, USDA-Animal Health Formula Funds. The authors are also grateful to the staff at the OSU Beef Center Facility for helping with animal handling and care.


2010 ◽  
Vol 22 (1) ◽  
pp. 245
Author(s):  
R. Dupras ◽  
J. Dupras ◽  
Y. Chorfi

In cows, estradiol-17β is usually used to synchronize follicular wave emergence during superovulatory treatment. This approach, however, raises some concerns about the presence of estrogens in bovine products and their possible association with some human estrogen-sensitive cancers. The objective of this study was to determine estradiol-17β concentrations in blood and milk of dairy cows after i.m. injection of estradiol-17β and to compare these concentrations to those obtained during standard superovulation protocols. Six cows were used for this experiment. On Day 0, corresponding to Day 7 of their ensuing cycle, cows received 4.5 mg of estradiol-17β (Gentes et Bolduc, St-Hyacinthe, Québec, Canada) via i.m. injection and a progesterone-releasing vaginal insert (1.9 g of progesterone, CIDR, Pfizer Animal Health, Kirkland, Québec, Canada). Blood and milk samples were taken at 0, 24, 48, and 72 h after injection. From Day 4 evening to Day 8 evening, the cows received a total of 380 mg of NIH-FSH-P1 (Folltropin-V, Bioniche Animal Health, Belleville, Ontario, Canada) administered i.m. through 9 injections of decreasing dose (from 70 to 20 mg) at 12-h intervals. On Day 7, the cows received 2 injections consisting of 500 μg of cloprostenol (prostaglandin F2 α analogue, Estrumate, Shering-Plough, Pointe-Claire, Québec, Canada) given approximately 12 h apart and vaginal inserts were removed 12 h after the last injection. Artificial insemination was performed on Day 9 and 10 after treatment with 100 μg of GnRH i.m. (Cystorelin, Merial Canada Inc., Baie Urfe, Québec, Canada). A second batch of blood and milk samples was taken at Day 8, 9, 10, and 11. Measurement of estradiol-17β was performed with an IMMULITE chemiluminescent counter using an IMMULITE Estradiol Kit (Siemens Diagnostic Products Corporation, Los Angeles, CA, USA). Concentrations of estradiol-17β in blood (37.1 ± 15.6 pg mL-1 at 24 h, 19.1 ± 14.2 pg mL-1 at 48 h) and milk (38.4 ± 29.5 pg mL-1 at 24 h, 9.3 ± 4.9 pg mL-1 at 48 h) were significantly higher after i.m. injection of 4.5 mg of estradiol-17β. In comparison, superovulation heat (Day 9 to 11) increased estradiol-17β concentrations in blood (20 ± 13.6 pg mL-1 at 24 h, 32.5 ± 16.3 pg mL-1 at 48 h) but not in milk.


2005 ◽  
Vol 17 (2) ◽  
pp. 159 ◽  
Author(s):  
R. Mapletoft ◽  
M. Colazo ◽  
L. Siqueira ◽  
J. Small ◽  
M. Rutledge ◽  
...  

Two experiments were designed to evaluate strategies to improve fertility with Cosynch-CIDR protocols in cattle. The first experiment investigated the effect of low levels of progesterone prior to a Cosynch-CIDR protocol. On Day 0, lactating beef cows (n = 34) and heifers (n = 37) were placed in two groups to receive 500 μg cloprostenol (PGF; Estrumate, Schering-Plough Animal Health, Pointe-Claire, Quebec, Canada) or a twice-used CIDR (Bioniche Animal Health, Belleville, Ontario, Canada) for 5 days (Pretreatment) or no treatment (Control). On Day 5, used CIDRs were removed and all cattle received a new CIDR (Pfizer Animal Health, Montreal, Quebec, Canada) and 100 μg GnRH (Cystorelin, Merial Canada Inc, Victoriaville, Quebec, Canada). On Day 12, CIDR were removed and PGF was given. A second GnRH was given concurrent with timed AI (TAI) on Day 14 (54–56 h after PGF). Cattle were examined by transrectal ultrasonography for CL and follicle development, and for confirmation of pregnancy (Days 42 to 49). Diameter of the dominant follicle on Day 5 was larger and more variable in cows than in heifers (15.5 ± 5.6 vs. 11.4 ± 3.5 mm, respectively; means, P < 0.001; variance, P < 0.003), and tended to be larger in the Pretreatment group (14.3 ± 4.9 vs. 12.6 ± 5.2 mm; P = 0.13). More Pretreated (60.0%) than Control (36.1%) cattle (P < 0.005), and more cows (64.7%) than heifers (32.4%; P < 0.03) ovulated following the first GnRH. At the time of TAI, 5 (13.5%) heifers had already ovulated (P < 0.03). Diameter of the preovulatory follicle was affected by parity (P < 0.001), but not Pretreatment (P = 0.4), and tended to be larger in heifers that became pregnant (P = 0.13). Pregnancy rate was not affected by parity (P = 0.71), or pretreatment (P = 0.34); pretreatment tended to increase pregnancy rate in heifers (63.2 vs. 38.9%; P = 0.19). The second experiment evaluated the use of eCG in a Cosynch-CIDR protocol in beef heifers. Beef heifers (n = 127) were fed 0.5 mg/head/day of MGA (Pfizer Animal Health) for 15 d; 12 d after the last feeding (designated as Day 0) heifers received a CIDR and 100 μg GnRH. On Day 7, CIDR were removed, and heifers received PGF, and were randomly placed in 2 groups to receive 300 IU of eCG (Pregnacol; Bioniche Animal Health) or no treatment (Control). On Day 9 (54–56 h after PGF), all heifers received 100 μg GnRH, concurrent with TAI. Ultrasonographic examinations were done as in the first experiment. Overall, 79.5% of the heifers had a CL, and 9.4% had a luteinized follicle on Day 0. Seventy-eight heifers (61.4%) ovulated following the first GnRH, and those that ovulated had a less variable preovulatory follicle size than those that did not (13.7 ± 1.7 vs. 13.8 ± 2.3 mm; means, P = 0.76; variance, P < 0.01). However, there was no difference in preovulatory follicle size (P = 0.63), or pregnancy rate (49.2 vs. 53.1%; P = 0.7) for eCG-treated vs. Control heifers. In summary, pretreatment with a twice-used CIDR plus PGF increased the proportion of cattle that ovulated to the first GnRH, but not preovulatory follicle size or fertility in cows; fertility tended to be improved in heifers. Treatment with eCG did not increase preovulatory follicle size or fertility in heifers subjected to an Cosynch-CIDR protocol.


Sign in / Sign up

Export Citation Format

Share Document