293 SUBCUTANEOUS ADMINISTRATION OF FOLLICLE STIMULATING HORMONE FOR SUPEROVULATION OF HOLSTEIN COWS

2009 ◽  
Vol 21 (1) ◽  
pp. 243 ◽  
Author(s):  
P. W. Farin ◽  
K. M. Dowdall ◽  
J. E. Hicks ◽  
C. E. Farin ◽  
C. S. Whisnant

Follicle stimulating hormone (FSH) is usually administered in a series of intramuscular (IM) injections to induce multiple ovulations for embryo production in cattle and other species. The objective of this study was to determine the superovulatory response of dairy cows to subcutaneous (SC) administration of FSH using a reduced number of injections in combination with a progesterone-releasing device. Eighteen non-lactating Holstein cows initially received 25 mg Prostaglandin F2α IM (PGF; Lutalyse; Pfizer Animal Health, Groton, CT, USA) on Day –7. All cows then received an intravaginal progesterone-releasing device (CIDR-B, 1.38 mg progesterone; Pfizer Animal Health) on Day 0, and 100 μg GnRH IM (Cystorelin; Merial Ltd, USA) on Day 2. Cows were randomly assigned to receive a total of 400 mg (20 mL) of FSH (Folltropin-V; Bioniche Animal Health, USA) either by IM injection (IM Group, n = 9 cows) given at 12 h intervals on Days 4 (60 mg, 60 mg), 5 (55 mg, 55 mg), 6 (45 mg, 45 mg) and 7 (40 mg, 40 mg), or by SC injection (SC Group, n = 9 cows) given at 24 h intervals on Days 4 (140 mg), 5 (140 mg) and Day 6 (120 mg). On Day 7, CIDR-B inserts were removed and cows received two 25 mg PGF IM injections given 12 h apart. Cows were artificially inseminated at 12 and 24 h after standing estrus. Blood samples were obtained from all cows at 0, 2, 4, 8, 12, 24, 36, 48, 60, 72, and 84 h after the first FSH injection for determination of serum FSH concentrations. Ovarian follicles and CL were monitored using ultrasonography on Days 4, 7, and 16. Embryos were recovered non-surgically on Day 16 (7 days after estrus). The effects of treatment on follicular response and embryo yield were analyzed by Wilcoxon test, and the response of cows to treatment was analyzed by chi-square test. The effects of treatment on concentrations of serum FSH were analyzed using ANOVA for repeated measures. There was no effect (P > 0.05) of route of FSH administration on the concentrations of serum FSH at any time point. The superovulatory response of cows to treatment, defined as greater than 2 CL per cow, did not differ (P > 0.05) between the IM (77.8%, 7/9 cows) and SC (88.9%, 8/9 cows) Groups. There was also no difference (P > 0.05) between the IM and SC Groups for the number of 5 to 10 mm follicles prior to FSH treatment (mean ± SEM; 0.6 ± 0.2 v. 0.9 ± 0.4), the total number of follicles after FSH treatment (12.4 ± 1.6 v. 12.7 ± 2.2) or the number of CL at embryo recovery (6.4 ± 1.5 v. 10.4 ± 2.1). Similarly, there were no differences (P > 0.05) between the IM and SC Groups for total number of oocytes/embryos (5.6 ± 2.6 v. 13.0 ± 4.3), transferable embryos (Grade 1, 2, 3; 3.0 ± 1.4 v. 6.1 ± 2.9) or Grade 1 embryos (2.9 ± 1.4 v. 4.3 ± 2.5). In conclusion, administration of FSH using 3 SC injections in combination with a progesterone-releasing device was an effective method for superovulation of Holstein cows. Supported by USDA Animal Health Formula Funds and the State of North Carolina.

2009 ◽  
Vol 21 (1) ◽  
pp. 169
Author(s):  
R. Dupras ◽  
Y. Chorfi

The objective of this study was to evaluate the use of a second flush for bovine embryo recovery. A total of 319 clinically healthy Holstein cows (247 lactating, 53 dry, 19 nulliparous) with an average age of 5.5 ± 2.5 years were used for this experiment. Superovulation was performed according to a modified method of Baracaldo et al. (2000). On Day 0 (beginning of the experiment), each cow received 3 mg of estradiol-17β intramuscularly (i.m.) and a progesterone-releasing vaginal insert (1.9 g of progesterone, CIDR, Pfizer Animal Health, Kirkland, QC, Canada) at random stages of the estrous cycle. From Day 4 evening to Day 8 evening, the cows received a total of 380 mg of NIH-FSH-P1 (FolltropinV, Bioniche Animal Health) administered im through 9 injections of decreasing dose (from 70 to 20 mg) at 12-h intervals. On Day 7, the cows received 2 injections consisting of 500 μg of cloprostenol (prostaglandin F2α analogue Estrumate, Schering-Plough, Pointe-Claire, QC, Canada) given approximately 12 h apart and vaginal inserts were removed 12 h after the last injection. Artificial insemination was performed on Day 10 after treatment with 100 μg, GnRH im (Cystorelin, Merial Canada Inc, Baie d’Urfe, QC, Canada). Embryos were flushed from the uterus of donor cows 6 days after AI. The method consisted of using simultaneously 1 catheter (18Fr Silicone 2-way, Bioniche Animal Health) per uterine horn. Catheters were maintained in place to perform 2 flushes 1 h apart. A total of 1000 mL of flushing media (Complete flush, Bioniche Animal Health) were used, 700 mL and 300 mL for the first and the second flush, respectively. Embryos were assessed for viability immediately after collection using IETS classification. Data were analyzed using the SAS MIXED procedure (SAS Institue, Cary, NC). The mean (±SD) number of embryos collected at the first flushing was 5.87 ± 5.1, 0.92 ± 2.2 and 2.9 ± 4.4 for transferable, degenerate and unfertilized oocytes, respectively. The second flushing yielded 2.32 ± 2.6 transferable embryos, 0.28 ± 0.83 dead embryos and 1.2 ± 2.2 unfertilized oocytes. There was no significant effect of age, day in milk, or stage of lactation on transferable or degenerate embryos or nonfertilized oocytes in each flushing. The embryo recovery method used in this experiment could be used to recover more transferable embryos. The authors want to thank Dr Vincent Girard for his help in statistics.


2013 ◽  
Vol 25 (1) ◽  
pp. 302
Author(s):  
J. P. Barfield ◽  
G. E. Seidel

Few studies have examined superovulation of North American Bison. In cattle, ovarian superstimulation is usually achieved with 6 to 8 injections of FSH at half-day intervals. However, handling bison repeatedly stresses the animals, which could adversely affect their reproductive potential, as well as pose a risk of injury to the bison and handlers. To limit the number of times the bison were handled, we tested a two-injection superovulation scheme using sodium hyaluronate (MAP-5, Bioniche Animal Health Inc., Belleville, Ontario, Canada) in the FSH diluent, which serves to slow the absorption of FSH when given IM. We hypothesised that the two-injection superstimulation protocol would result in recovery of more embryos on average than a single-embryo recovery protocol. Although a traditional superovulation scheme with 6 to 8 injections of FSH would have been a better comparison, our goal was to handle the bison minimally. Eight female bison ranging in age from 5 to 11 years were used as embryo donors. For superovulation, females with a corpus luteum (CL) were given 25 mg of prostaglandin F2α (PGF, Lutalyse, Pfizer Animal Health, New York, NY, USA) IM followed by 266 mg of FSH (Folltropin V in MAP-5 diluent, i.m., Bioniche Animal Health Inc.) 12 days later (or 9 days after presumed oestrus 3 days post-PGF). Forty-eight hours after the first FSH injection, 134 mg of FSH IM and 25 mg of PGF IM were given. Two days later females were put in a pen with a bison bull for natural breeding. Seven days after assumed oestrus, embryos were recovered nonsurgically. Although the situation is not clear in bison, there is evidence in cattle that superovulated cycles influence embryo collections in subsequent cycles. Consequently, females were randomly assigned to a superovulation or single-embryo recovery treatment for each cycle; however, consecutive superovulation protocols were never conducted without a short oestrous cycle in between. Superovulated females were given PGF at embryo recovery after superovulation, followed by PGF 12 to 14 days later, and bred off the assumed oestrus of the second PGF injection. Embryos were collected from females 4 times (2 superovulation and 2 single embryo cycles, except one bison that was superovulated once). Data were analysed using a one-tailed t-test. Superovulation resulted in greater mean numbers of palpable CL (3.7; P < 0.001), embryos collected (1.8; P < 0.05), and transferable quality embryos (0.8; P < 0.05) compared with the single-embryo recovery protocol (mean palpable CL, 1.0; embryos collected, 0.5; transferable embryos, 0.2). Notably, the bison breeding season is July to September and occasionally animals breed in October; this experiment was conducted in October and November. Thirteen transferable embryos were nonsurgically transferred to recipients; 6 pregnancies were established, but 5 were resorbing by 2 months of gestation; 1 healthy calf was carried to term. Two injections of FSH with a long-acting diluent can be used to increase the number of embryos recovered from bison compared with a single-embryo recovery scheme.


Author(s):  
Erkan Pehlivan ◽  
Hüseyin Polat ◽  
Gürsel Dellal

In this research, annual changes of melatonin, gonadotropin-releasing hormone, follicle stimulating hormone, luteinizing hormone, estrogen, testosterone and progesterone were studied on 6 heads of 1.5 years old female Angora goat. To determine hormones concentrations, blood samples were taken from jugular vein of each goat in every month for a year. The blood samples were centrifuged at 4000xg for 5 min. and serum was stored at -20°C until analyses time. Hormones analyses in the serum were performed by enzyme immunoassay (EIA) method. Monthly climatic values and photoperiod were obtained from the Turkish State Meteorological Service and temperature-humidity index was calculated with climatic values. In the study, in order to determine any possible differences in the observed hormones concentrations with respect to months, repeated measures ANOVA analysis was performed. As a result of statistical analysis, there were no significant differences among the months for gonadotropin-releasing hormone, follicle stimulating hormone and testosterone concentration, while significant differences were found among the months for melatonin, luteinizing hormone and progesterone, and estrogen concentration in female Angora goats. According the results of this study, could be concluded that the releases of reproductive hormones examined in female Angora goats was seasonally dependent.


Author(s):  
Kaitlin R Karl ◽  
Fermin Jimenez-Krassel ◽  
Emily Gibbings ◽  
Janet L H Ireland ◽  
Zaramasina L Clark ◽  
...  

Abstract When women with small ovarian reserves are subjected to assisted reproductive technologies, high doses of gonadotropins are linked to high oocyte and embryo wastage and low live birth rates. We hypothesized that excessive follicle-stimulating hormone (FSH) doses during superovulation are detrimental to ovulatory follicle function in individuals with a small ovarian reserve. To test this hypothesis, heifers with small ovarian reserves were injected twice daily for 4 days, beginning on Day 1 of the estrous cycle with 35, 70, 140, or 210 IU doses of Folltropin-V (FSH). Each heifer (n = 8) was superovulated using a Williams Latin Square Design. During each superovulation regimen, three prostaglandin F2α injections were given at 12-h interval, starting at the seventh FSH injection to regress the newly formed corpus luteum (CL). Human chorionic gonadotropin was injected 12 h after the last (8th) FSH injection to induce ovulation. Daily ultrasonography and blood sampling were used to determine the number and size of follicles and corpora lutea, uterine thickness, and circulating concentrations of estradiol, progesterone, and anti-Müllerian hormone (AMH). The highest doses of FSH did not increase AMH, progesterone, number of ovulatory-size follicles, uterine thickness, or number of CL. However, estradiol production and ovulation rate were lower for heifers given high FSH doses compared to lower doses, indicating detrimental effects on ovulatory follicle function.


2010 ◽  
Vol 22 (1) ◽  
pp. 360
Author(s):  
M. I. Cueto ◽  
F. Pereyra-Bonnet ◽  
P. Silvestre ◽  
A. E. Gibbons

The aim of the study was to assess possible variations in superovulatory yields due to different FSH treatments at 2 times of the year. Superovulation and embryo recovery were performed during the breeding (n = 63) andnonbreeding (n = 46) seasons in Merino ewes located at 41°S latitude. Animals were kept under the same conditions, housed outdoors in a sheltered and covered pen, and were fed a liveweight maintenance ration. All animals received 60-mg medroxyprogesterone acetate intravaginal sponges (Progespon®, Syntex, Buenos Aires, Argentina) for 14 days. Ewes were then randomly assigned to 2 different superovulatory treatments: classic (n = 74) and one shot (n = 35) in both seasons. Classic superovulatory treatment consisted of 7 decreasing doses (2 × 48 mg, 2 × 24 mg, 2 × 20 mg, and1 × 16 mg NIH-FSH-P1)ofFSH (Folltropin®-V, Bioniche, Belleville, Ontario, Canada), administered twice daily from 48 h before to 24 h after pessary removal. A dose of eCG (300 IU; Novormon®, Syntex) was administered at progestagen removal. One shot superovulatory treatment consisted of a single dose of FSH (70 mg NIH-FSH-P1) plus 300 UI of eCG injected at pessary withdrawal. Embryo donors were inseminated by laparoscopy with frozen-thawed semen (100 × 106 spz) 12 h after the onset of estrus. Surgical embryo recovery was done on Day 7 after sponge withdrawal and embryos were graded for quality according to morphology (Grade 1 = excellent or good; Grade 2 = fair; Grade 3 = poor; and Grade 4 = dead or degenerated; IETS 1998). A 2 × 2 factorial ANOVA was used to test the main effects (season and superovulatory treatment) and interactions. There were no significant differences in the proportion of responding ewes (>3 corpora lutea), ovulation rate, and recovered Grades 1 to 2 embryos between the breeding and nonbreeding season (Table 1; P > 0.05). However, number of recovered ova/embryos and ova/embryo recovery rate were higher during the breeding season compared with the nonbreeding season, whereas the percentage of nonfertilized ova was lower in the breeding season than in the nonbreeding season (P < 0.05). Analysis of data comparing superovulatory treatments showed that the proportion of responding ewes, ovulation rate, recovered embryos, and recovered Grades 1 to 2 embryos were lower for the one shot treatment than for the classic treatment (P < 0.05). Embryo recovery rate and nonfertilization rate did not differ between treatments (P > 0.05). It was concluded that there was an increase in the number of total recovered ova/embryos during the breeding season compared with the nonbreeding season, although the number of recovered good-quality embryos was not affected. The use of multiple FSH injections produced a higher number of total recovered and viable embryos in Merino sheep than the one shot superovulatory treatment. Table 1.Embryo yields in ewes submitted to superovulation


2010 ◽  
Vol 22 (1) ◽  
pp. 359
Author(s):  
B. P. Carvalho ◽  
M. R. B. Mello ◽  
J. M. Baldrighi ◽  
J. S. Campanati ◽  
R. R. C. Mello ◽  
...  

The use of bovine embryo transfer to increase the reproductive potential of animals with high genetic merit is unquestionable. However, studies that evaluate the response to exogenous FSH stimulation in Red Sindhi cows are rare. Therefore, the objective of this study was to compare the superovulatory response of Red Sindhi cows treated with 3 different doses of FSH (Folltropin®-V, Bioniche Animal Health, Belleville, Ontario, Canada). The animals used had body condition scores ranging from 3.5 to 4.0 (1-5 scale), were between 6 and 10 years of age, and were randomly assigned to 1 of 3 treatment groups. Three doses of FSH were administered: 100 mg (n = 16); 133 mg (n = 13), and 200 mg (n = 14). The treatments were initiated on random days of the estrous cycle. On Day 0, animals received 2 mg of estradiol benzoate i.m. (Estrogin®, Farmavet, Jaboticabal, Brazil) and an intravaginal device (CIDR; InterAg, Hamilton, New Zealand) with 1.9 g of progesterone. On Day 4, donors received FSH in 8 i.m. injections that decreased in dose during 4 consecutive days. A dose of 265 μg of cloprostenol (Ciosin®, Schering-Plough, Cotia, Brazil) was given i.m. concomitantly with the fifth FSH injection. Twelve hours after the last FSH injection, donors received 25 μg of lecirelin i.m. (GnRH; Gestran Plus®, ARSA SRL, Buenos Aires, Argentina). TheAI were performed 12 and 24 h after GnRH. Seven days after the first AI, embryos were recovered and classified as described in the IETS manual. Data were evaluated using KruskalWallis test at a 5% level of significance. Ovarian ultrasonography was also performed to count the number of CL present at the time of ova/embryo collection. Results are summarized in Table 1. The number of CL and total ova/embryos was higher in donors receiving 200 mg of FSH than in those in the other groups. However, the number of transferable or cryopreserved embryos did not differ among groups. In conclusion, the dosage of 200 mg of Folltropin®-V seemed to be the more adequate dosage for this breed of cattle. Table 1.Effect of different follicle-stimulating hormone (FSH) doses on CL number, total structures, transferable embryos, and cryopreserved embryos in Red Sindhi cows (mean ± SEM) Financial support provided by FAPERJ (E26-170.529/2007).


Sign in / Sign up

Export Citation Format

Share Document