211 IN VITRO PRODUCTION OF SWAMP BUFFALO EMBRYOS BY INTRACYTOPLASMIC SPERM INJECTION: EFFECT OF CHEMICAL ACTIVATION TREATMENTS

2009 ◽  
Vol 21 (1) ◽  
pp. 203
Author(s):  
Y. Y. Liang ◽  
D. N. Ye ◽  
C. Laowtammathron ◽  
T. Phermthai ◽  
R. Parnpai

Intracytoplasmic spern injection (ICSI) in the buffalo has not yet been well examined. Several factors involved affect the success rates of this technique, particularly the postinjection activation procedure. The objective of this study was to evaluate the effects of chemical activation treatments on in vitro development of oocytes after ICSI. A single spermatozoa was injected into the cytoplasm of an in vitro-matured oocyte using a micromanipulator under an inverted microscope. The ICSI oocytes were assigned to the following chemical activation treatments: (1) exposed to 5 μm ionomycin (Io) in Emcare medium for 5 min and placed in Emcare medium for 3 h, or (2) exposed to 7% ethanol (EtOH) in Emcare medium for 5 min and placed in Emcare medium for 3 h. The treated oocytes that extruded a second polar body were then selected and cultured either in (A) 1.9 mm 6-dimethylaminopurine (6-DMAP) in mSOF medium for 3 h, or (B) 10 μg mL–1 of cychloheximide (CHX) for 5 h. The treated oocytes were further cultured in mSOF medium supplemented with 3 mg mL–1 of fatty acid-free BSA at 38.5°C under a humidified atmosphere of 5% O2, 5% CO2, and 90% N2 for 2 d. Thereafter, 8-cell-stage embryos were selected and co-cultured with buffalo cumulus cells in mSOF medium at 38.5°C under a humidified atmosphere of 5% CO2 in air for another 5 d. The medium was changed daily and the development of embryos was recorded at the same time the medium was changed. The sham-injected oocytes were treated and cultured along with ICSI oocytes. With 8 replications for each activation treatment, 336 oocytes were used for ICSI. With 6 replications for each activation treatment, 211 oocytes were used for sham injection. The cleavage of ICSI oocytes treated with Io + 6-DMAP, EtOH + 6-DMAP, and EtOH + CHX was 76.2, 69.4, and 78.3%, respectively, which was significant higher (P < 0.01) than ICSI oocytes treated with Io + CHX (52.4%) and also significant higher (P < 0.01) than sham-injected oocytes in all treatments. The highest blastocyst rate was observed in ICSI oocytes treated with Io + 6-DMAP (28.6%), which was not significantly different from ICSI oocytes treated with EtOH + CHX (24.4%). The blastocyst rates of ICSI oocytes treated with Io + 6-DMAP and EtOH + CHX were significantly higher than ICSI oocytes treated with Io + CHX (5.9%) and EtOH + 6-DMAP (16.5%) and also were significantly higher than sham-injected oocytes in all treatments. In conclusion, our study demonstrated that activated ICSI of swamp buffalo oocytes with Io + 6-DMAP or EtOH + CHX gave the highest cleavage and blastocyst rates. This work was supported by the Thailand Research Fund and Suranaree University of Technology.

2015 ◽  
Vol 27 (1) ◽  
pp. 95
Author(s):  
M. B. Rodríguez ◽  
A. Gambini ◽  
R. J. Bevacqua ◽  
D. F. Salamone

Interspecific intracytoplasmic sperm injection (ICSI) is a valuable tool to study early events of fertilization in species for which oocyte availability is reduced. Equine in vitro fertilization remains unsuccessful and ICSI is the technique of choice for the in vitro production of high-value embryos. Therefore, the objective of this study was to evaluate the rate of pronuclear (PN) formation after ICSI with stallion sperm in bovine, swine and feline oocytes with or without chemical activation assistance. Ovaries from cows and pigs were collected at abattoirs whereas gonads from female domestic cats were obtained from ovariectomized animals at veterinary sterilization centers. Cumulus-oocyte complexes were matured in TCM-199 supplemented following standard protocols for each species. ICSI was performed in 100-μL drops of TALP-HEPES, using frozen-thawed semen from one stallion. Spermatozoa were held separate in 3-μL droplets of 7% (vol/vol) polyvinylpyrrolidone, where one of them was immobilized by swiping the injection pipette across its tail, and then injected into the matured oocyte. After ICSI, some oocytes were chemically activated with 5 μM ionomycin for 4 min (cow and cat) or with an electric pulse (sow) followed by 3 h in culture medium to allow extrusion of the second polar body and then exposure to 1.9 mM 6-DMAP solution for 3 h. Embryos were cultured in SOF medium. After 17 h of culture, embryos were stained with propidium iodide to identify the percentage of oocytes activated and with PN. Haploid and diploid parthenogenetic controls were included. Cleavage (48 h after activation) and blastocyst formation (7–8 days) of the partenogenetic control groups were assessed. There were no statistical differences (chi-squared analysis) in PN formation between the activated and nonactivated groups within species. When the activated group was compared between the different species, no differences were observed. However, for the nonactivated group, significant differences were observed between species. The feline oocyte showed the higher percentage of PN and activation, whereas the bovine oocyte exhibited the lower rate of PN formation (cat: 22/27, 81.48%; swine: 19/39, 71.64%; cow:18/63, 43.07%). Our results suggest that the feline oocyte can be used as model to study fertilization events associated with the stallion sperm due to the higher efficiency in supporting PN formation. Our results indicate that the equine sperm is capable of inducing PN formation in these 3 species without further chemical activation assistance.


2018 ◽  
Vol 14 (4) ◽  
pp. 512-514
Author(s):  
Nor Shahida Abdul Rahman ◽  
Mimi Sophia Sarbandi ◽  
Wan Hafizah Wan Jusof ◽  
Zolkapli Eshak ◽  
Salina Othman ◽  
...  

The timing of the first zygotic cleavage is an accurate predictor of embryo quality. Embryos that cleaved early have higher developmental viability compared to their late counterparts. During embryonic development, cleavage is affected by cellular metabolic processes performed by mitochondria and its synergistic interaction with endoplasmic reticulum (ER). However, in depth study on differences of mitochondria and ER ultrastructures in early- cleaving (EC) versus late- cleaving (LC) embryos is limited. This study compares mitochondria and ER ultrastructures of EC versus LC embryos using Confocal Laser Scanning Microscopy (CLSM) and Transmission Electron Microscopy (TEM). Embryos were obtained from female ICR superovulated mice, 28-30 hours post hCG. Two-cell embryos were categorized as early-cleaving (EC), while zygotes with the second polar body and two pronuclei present were categorized as late-cleaving (LC). The LC embryos were cultured in vitro until the 2- cell stage. In EC embryos, mitochondria were mostly found at the perinuclear region and closely associated with dense ER. Meanwhile, mitochondria of LC embryos were distributed uniformly within the cytoplasm. Mitochondrial fluorescence intensity was significantly higher in EC versus LC [(18.7 ± 0.4) versus (14.6 ± 0.4)] x 105 pixel, (p<0.01). Development to the blastocyst stage was also significantly higher in EC compared to LC embryos (96.7% versus 60.9%) (p<0.01). Higher viability of EC embryos is attributed to the close association of their mitochondria to ER. This contributed to better mitochondrial fission, resulting in enhanced energy generating processes and preimplantation development. 


2005 ◽  
Vol 17 (2) ◽  
pp. 285
Author(s):  
J.I. Park ◽  
Y. Jang

This study was carried out to assess the nuclear status after parthenogenetic activation in in vitro matured oocytes under different conditions. Bovine ovaries were collected from slaughtered cows at a local abattoir. Oocytes were aspirated from follicles of 3–8 mm in diameter and transferred to maturation medium: tissue culture medium (TCM)-199 supplemented with 10% (v/v) fetal calf serum, 100 mg/mL l-cysteine, 20 mg/mL sodium pyruvate, gonadotropins (each 250 IU of eCG and hCG/mL), and 10 mg/mL epidermal growth factor, with or without 5 mM hypotaurine and taurine. Oocytes were cultured at 38.9°C in 5% CO2 in humidified air. After 24 h of culture, oocytes with polar body were selected and submitted to activation treatments. Oocytes were exposed to calcium ionomycin (5 μM for 5 min) followed by incubation with 6-DMAP (2 mM), roscovitine (50 μM), or 6-DMAP + roscovitine for 3.5 h. After activation, oocytes were cultured in mSOF medium containing 0.8% BSA at 38.9°C in 5% CO2, 5% O2 in humidified air for 16 h and stained with Hoechst 33342 or aceto-orcein for assessment of nuclear status. Nuclear status was recorded as follows: 1PB (polar body) + 1PN (pronucleus), 2PB + 1PN and others. Data were analyzed using chi-square test. The maturation rate of bovine oocytes cultured in maturation medium containing hypotaurine/taurine (89.3%, n = 84) was higher (P < 0.05) than those cultured without hypotaurine/taurine (72%, n = 93). In the oocytes matured with hypotaurine/taurine, the rates of diploid activation (1PB + 1PN) were 84% (n = 50) in oocytes treated with 6-DMAP + roscovitine, 78.6% (n = 56) with 6-DMAP, and 52% (n = 50) with roscovitine. In the oocytes matured without hypotaurine/taurine, the rates of diploid activation were 80% (n = 60) in oocytes treated with 6-DMAP + roscovitine, 72% (n = 50) with 6-DMAP, and 54% (n = 50) with roscovitine. The rates of diploid activation were not different in oocytes matured with or without hypotaurine/taurine and among activation treatments. The oocytes treated with roscovitine showed a lower rate (P < 0.05) of diploid activation and higher rate (39.3–40%) of second polar body extrusion (1PN + 2PB) than the other activation groups in both maturation conditions. Cleavage rates to 2-cell stage were 40–45% in all groups. Development rate of blastocysts were 7–10% in all the groups treated with 6-DMAP and 6-DMAP + roscovitine and no blastocysts were obtained from the groups treated with roscovitine alone. Hypotaurine/taurine are known to be stable and potent antioxidants, and have shown the properties of supporting oocyte maturation and further embryonic development (Guerin and Menezo 1995 Zygote 3, 333–43; Mizushima and Fukui 2001 Theriogenology 55, 1432–45). In this study, although the effectiveness of hypotaurine/taurine on promoting oocyte maturation was observed, there were no significant improvements in the rate of diploid activation in oocytes matured with hypotaurine/taurine. These results suggest that the nuclear status of activated oocytes may not have a direct relationship with the enhanced maturation condition. This work was supported by BioGreen 21 Program(#1000520030100000-1), Republic of Korea.


2009 ◽  
Vol 21 (1) ◽  
pp. 247
Author(s):  
R. J. Bevacqua ◽  
F. Pereyra-Bonnet ◽  
R. Olivera ◽  
D. F. Salamone

ICSI-mediated gene transfer is a powerful technique used to produce transgenic mice and pigs. However, this method of transgenesis has not been applied in bovine due to low embryo development, which is presumed to be a consequence of a failure in sperm factor delivery after ICSI in this species. To bypass this problem, we assisted ICSI with chemical activation, employing two Ionomycin (Io) exposures and 6-Dimethylaminopurine (DMAP) or a novel drug, Dehydroleucodine (DhL). Cumulus–oocyte complexes were aspirated from ovaries obtained from a local slaughterhouse and in vitro matured in bicarbonate-buffered TCM-199 containing 10% FBS, 10 μg mL–1 FSH, 0.3 mm sodium pyruvate, 100 μm cysteamine and 10 UI mL–1 penicillin. IVM conditions were 6% CO2 in humidified air at 39°C for 24 h. MII oocytes were selected and used immediately for ICSI. Sperm samples were frozen/thawed by standard procedures. Coincubation of spermatozoa with DNA construction (pCX-EGFP) was carried out in Na citrate 2.8%, with 0.5 μg plasmid million–1 spermatozoa for 5 min at 0°C. Then, spermatozoa were used for ICSI. Injected oocytes were activated in 5 μm Io for 4 min and placed in TCM-199 for 3 h to allow second polar body emission. Afterwards, some of the oocytes were subjected to a second exposure of Io. Oocytes exposed once or twice to Io were then incubated with 2 mm DMAP (groups Io-DMAP and 2Io-DMAP) or 5 mm DhL (groups Io-DhL and 2Io-DhL) for 3 h. Control groups (Io and 2Io) were not treated with DMAP or DhL. Embryos were cultured in the IVM droplets. EGFP expression was daily evaluated in fluorescence microscope under blue light (488 nm). Significant differences between groups were evaluated by Fisher test (Table 1). DhL chemical activation improved neither development nor transgenesis rates. The double Io exposure significantly improved embryo development. The second exposure to Io previous chemical activation with DMAP resulted in an increase in the percentage of EGFP-expressing embryos. Our results indicate that activation with double Io-DMAP could be considered an alternative assistance for ICSI mediated gene transfer in bovine. Table 1.Effect of activation assisting transgenic ICSI on development and expression of bovine embryos


1973 ◽  
Vol 13 (2) ◽  
pp. 553-566 ◽  
Author(s):  
M. H. KAUFMAN

Mouse eggs were activated by treatment with hyaluronidase which removed the follicle cells, followed by culture in vitro, and examined at the first cleavage mitosis. Second polar body extrusion usually occurred and haploid parthenogenesis was initiated. Air-dried chromosome preparations were made between 11 and 15.5 h after activation. Out of the 308 eggs examined 74 had already progressed to the 2-cell stage; the remaining 234 at the 1-cell stage were examined in detail. All chromosome preparations of the first cleavage mitosis were classified into groups corresponding with the stages of prometaphase, metaphase (early or ‘pre-chromatid’, ‘chromatid’ and ‘late chromatid’) and anaphase. An indirect estimate was made of the duration of the first cleavage mitosis and of its component stages from the incidence of stages observed at different time intervals after activation. Similar eggs were also observed at 37 °C by time-lapse cine-photography and the interval between the disappearance of the pronucleus to the beginning of telophase of the first cleavage division was determined. The results of timing studies on the haploid eggs were compared with results obtained from similar observations on the first cleavage division of fertilized eggs which would of course normally be diploid. Artificially activated eggs with 2 pronuclei, resulting from second polar body suppression, were also examined, and serial chromosome preparations during mitosis showed that the 2 pronuclear chromosome groups unite on the first cleavage spindle and divide to give a hetero-zygous diploid 2-cell embryo.


2005 ◽  
Vol 17 (2) ◽  
pp. 221 ◽  
Author(s):  
M.R.B. Mello ◽  
C.E. Ferguson ◽  
A.S. Lima ◽  
M.B. Wheeler

In vitro embryo culture is an important step of in vitro production of bovine embryos. It has been shown that IVF-derived bovine embryos cultured in KSOM or CR1aa have high development rates. In our laboratory, we have observed that 8-cell embryos are morphologically superior when embryos are cultured in KSOM whereas blastocysts are morphologically superior when embryos are cultured in CR1aa. Based on these observations, we hypothesized that development of IVF-derived bovine embryos can be improved by sequential use of these media (KSOM and CR1aa). The aim of this experiment was to compare the in vitro development of bovine embryos cultured in KSOM, CR1aa or KSOM/CR1aa supplemented with BSA at Day 0 and BSA and FBS at Day 3. In order to accomplish the sequential culture, fertilized oocytes where cultured in KSOM to the 8-cell stage and then transferred to CR1aa for further development. Oocytes were purchased from Bomed (Madison, WI, USA), and after 22 hours of maturation were fertilized with frozen-thawed semen for 5 hours at 39°C in 5% CO2. After fertilization, the presumptive zygotes were denuded from cumulus cells by votexing and were randomly allotted to one of 3 treatments: (1) cultured only in KSOM (n = 110), (2) cultured only in CR1aa (n = 102), and (3) cultured in KSOM in the first 3 days and then in CR1aa from Day 3 to Day 9 (n = 110). The embryo culture was carried out in 50-μL droplets of medium that were placed in an airtight modular incubator filled with 5% CO2, 5% O2 and 90% N2. The embryos were evaluated on Days 6 to 9 post insemination. All embryo developmental rates were calculated from presumptive zygotes. The Day 6 morula rates were 52%, 40%, and 47% for KSOM, CR1aa, and KSOM/CR1aa, respectively. The Day 7 blastocyst rates for KSOM (40%), CR1aa (25%), and KSOM/CR1aa (30%) were not significantly different; however, Day 9 hatched blastocyst rates were significantly higher (P < 0.05) for KSOM (22%) compared to CR1aa (9%) but not different from KSOM/CR1aa (14%). Regarding embryo quality, Day 7 transferable embryos rates (Grade 1 and Grade 2) were 35%, 25%, and 30%, respectively for KSOM, CR1aa, and KSOM/CR1aa; however, no significant difference was observed. These results indicate that IVF-derived bovine embryos can develop in KSOM, CR1aa, or KSOM/CR1aa with no significant difference among morula, blastocyst and hatched blastocyst rates. However, the combination of KSOM and CR1aa during in vitro culture did not decrease the morula and blastocyst rates.


2007 ◽  
Vol 19 (1) ◽  
pp. 163
Author(s):  
N. T. Uoc ◽  
F. de Rennis ◽  
N. H. Duc ◽  
L. C. Bui ◽  
N. V. Hanh ◽  
...  

Reproductive activity in swamp buffalo is characterized by a clearly demonstrated anestrus season. The aim of the present study was to evaluate season effect on the oocyte collection, in vitro maturation, and somatic cell nuclear transfer. The ovaries collected from a slaughterhouse were divided into 3 groups according to the collection period: (1) G1: from January to April; G2: from May to August, which is characterized by higher climate temperature and low reproductive activity; and G3: from September to December. Cumulus–oocyte complexes (COCs) were aspirated from follicles 2-6 mm in diameter using an 18-gauge needle, washed in HEPES-buffered TCM-199 (Sigma-Aldrich, St Louis, MO, USA), and classified following 3 different quality levels: A (with 4–6 layers of cumulus cells), B (with 2–3 layers of cumulus cells), and C (few or without cumulus cells). The oocytes of A and B categories were used for IVM in maturation media currently used in cattle (TCM-199 medium + 10% fetal bovine serum) with an increase of FSH concentration (30 �g mL-1) and estradiol-17β (3 �g mL-1). Maturation was carried out at 39�C in a water-saturated incubator, under 5% CO2 for 22 h. The oocytes were observed for the cumulus expanding and the presence of polar body (PB). The oocytes with PB were used for further enucleation and cell nuclear transfer using buffalo quiescent fibroblast cells and the technique described previously (Nguyen et al. 2000 Theriogenology 53, 235). The percentages of intact and fused oocytes as well as reconstructed embryos developed to blastocyst stage were compared for the oocytes from G1 and G2. The results indicated that the average number of good quality COCs collected per ovary for the G1, G2, and G3 period were 6.00 � 4.08 (n = 426), 2.93 � 2.55 (n = 346), and 4.78 � 1.05 (n = 445), respectively. The percentages of A and B oocytes were 62.4% (1.58 � 0.51 vs. 2.17 � 1.54), 63.2% (0.90 � 0.32 vs. 0.95 � 0.50), and 54.7% (1.12 � 0.25 vs. 1.49 � 0.53), respectively; the maturation rate was 55.08%, 56.28%, and 52.16%, respectively. There were no significant differences between G1 and G2 in the percentage of intact and fused oocytes (93.7% and 59% for G1; 100% and 60% for G2, respectively), but the rate of embryos developed to blastocyst stage was higher for oocytes from G1 (18.5% vs. 10.2%). In conclusion, in swamp buffalo, the hot season affected significantly the number of oocytes collected per animal and the subsequent results of somatic cell nuclear transfer. The optimal period for working with buffalo oocyte is from January to April. This work was aupported by a grant from the Vietnam-Italy 3AB3 Project.


2014 ◽  
Vol 26 (2) ◽  
pp. 346 ◽  
Author(s):  
Haixia Jin ◽  
Yimin Shu ◽  
Shanjun Dai ◽  
Zhaofeng Peng ◽  
Senlin Shi ◽  
...  

In this study we evaluated the value of short-time insemination and early rescue intra-cytoplasmic sperm injection (ICSI) in preventing the occurrence of complete fertilisation failure for mild or moderate male infertility patients. A total of 866 couples with borderline semen who underwent in vitro fertilisation treatment in 2010 were included. Regular insemination was performed between January and June of 2010 and short-term insemination was performed from July through December 2010, where, as early as 4 h after insemination, oocytes were denuded from cumulus cells and extrusion of the second polar body was evaluated. Of the 4153 mature oocytes with a detectable second polar body 4 h after insemination, 3874 (93.3%) showed signs of fertilisation on Day 1. Where no second polar body was present in any of the retrieved oocytes for a given patient, rescue ICSI was performed immediately. Similar rates of normal fertilisation and percentage of good-quality embryos were obtained between early rescue ICSI and regular ICSI. Clinical pregnancy occurred in 16 of 43 patients (37.2%) receiving early rescue ICSI. Our results showed early rescue ICSI in combination with evaluation of the second polar body 4 h following insemination is an effective method to prevent complete fertilisation failure for patients with mild or moderate male infertility.


2006 ◽  
Vol 18 (2) ◽  
pp. 223 ◽  
Author(s):  
E. R. S. Roldan ◽  
F. Berlinguer ◽  
S. Succu ◽  
R. Gonzalez ◽  
A. del Olmo ◽  
...  

In vitro maturation of oocytes recovered from dead animals provides an opportunity for rescuing genetic material for biodiversity conservation. The dorcas gazelle (Gazella dorcas) is regarded by the World Conservation Union (IUCN) as ‘vulnerable’ but the subspecies G. dorcas neglecta is thought to be endangered due to excessive hunting. A captive breeding program for dorcas gazelles has been developed at the Estacion Experimental de Zonas Aridas (CSIC) in the South of Spain where efforts have so far concentrated on natural breeding and on the development of sperm cryopreservation protocols. The aim of the present study was to explore the possibility of recovering and maturing in vitro healthy oocytes from animals that die suddenly for the establishment of a program to rescue female gametes. Ovaries of a dorcas female that died unexpectedly were collected about 7 h after death of the animal. Cumulus–oocyte complexes (COCs) were recovered by slicing the ovaries. Collection and washing of COCs were performed in warmed TCM-199-HEPES with antibiotics and polyvinyl alcohol. Degenerated oocytes or those with expanded cumulus cells were removed. A total of 15 COCs were cultured in TCM-199 with 10% heat-treated fetal calf serum, 10 μg/mL ovine FSH/LH, 1 µg/mL estradiol, and 0.1 mg/mL glutamine at 38.5°C under 5% CO2/air with high humidity. After 24 h of culture, matured oocytes, as revealed by the presence of a polar body, were activated with 7% ethanol for 10 min and further incubation for 3 h. Meiotic progression and activation were evaluated by staining with Hoechst 33342 and propidium iodide (1 μg/mL each) and visualization under a fluorescence microscope. Results at the end of incubations showed that 4/15 oocytes were degenerated, 4/15 were arrested at the MI stage, and 7/15 (46.7%) progressed to the MII stage. One oocyte was found to be at the 2-cell stage but it could not be established whether this was the result of the activation method used. These results demonstrate that it is possible to recover viable oocytes several hours after death and rescue them for subsequent in vitro maturation and fertilization. More studies are needed to characterize suitable conditions for oocyte maturation, fertilization, and culture in the dorcas gazelle. This would, in turn, help in the effort to rescue biomaterials from wildlife for generating offspring. This work was supported by the Spanish Ministry of Education and Science (REN 2003–01587) and Acciones Integradas (HI20030336).


2013 ◽  
Vol 25 (1) ◽  
pp. 162 ◽  
Author(s):  
J. Hall ◽  
Q. Meng ◽  
B. R. Sessions ◽  
Z. Fan ◽  
X. Wang ◽  
...  

The yield of blastocysts and hatched blastocysts using in vitro production (IVP) in goats are still low. The development of caprine embryos is frequently arrested at the 8- to 16-cell stage, indicating suboptimal culture conditions (Jimenez-Macedo et al. 2005 Theriogenology 64, 1249–1262). Our goal was to produce transgenic goats by somatic cell nuclear transfer (SCNT) and further determine whether the length of embryo culture has an effect on development to term. We compared the efficiency of transferring single-cell embryos 12 h post-activation to transferring 4- to 8-cell embryos cultured for 60 h post-activation. Nine transgenic goats from 2 cell lines were produced through SCNT. Somatic donor cells were obtained from 2 sources: adult fibroblasts and fetal fibroblasts. Adult fibroblasts were obtained from a transgenic doe skin biopsy. Fetal fibroblasts were isolated from a 25-day-old fetus and then electroporated with a pcDNA3.1DV5-MHC-TGF-β1cys33ser vector, followed by G418 selection, screening, and subsequent use for SCNT. Oocytes with >4 layers of cumulus cells were collected by slicing abattoir ovaries and matured in vitro for 21 to 23 h. After being denuded, oocytes presenting a first polar body were enucleated and received a donor cell from 1 of the 2 cell lines. Fused embryos were then activated for 5 min in 5 µM ionomycin, followed by 4 h in 2 mM DMAP with 5 µg of cycloheximide mL–1. Activated embryos were cultured in G1 medium with 5 mg of BSA mL–1 for either 12 or 60 h post-activation, followed by surgical transfer into the oviducts of recipients synchronized to show estrus within 12 h of SCNT. Overall, 376 embryos were transferred into 23 recipients. Pregnancy was examined by ultrasonography on Day 30 post-transfer. No pregnancy losses were observed after Day 30 of gestation. All kids were born live (42% of recipients receiving embryos cultured for 12 h gave birth, compared with only 9% when cultured for 60 h). The data (Table 1) suggest that a longer culture time in vitro significantly reduces viability of cloned embryos. Table 1.Twelve-hour versus 60-h embryo culture This work was supported by Utah Agricultural Experiment Station project no. 1100.


Sign in / Sign up

Export Citation Format

Share Document