scholarly journals 271 ASSESSMENT OF NUCLEAR STATUS OF ACTIVATED BOVINE OOCYTES MATURED IN DIFFERENT MATURATION CONDITIONS IN VITRO

2005 ◽  
Vol 17 (2) ◽  
pp. 285
Author(s):  
J.I. Park ◽  
Y. Jang

This study was carried out to assess the nuclear status after parthenogenetic activation in in vitro matured oocytes under different conditions. Bovine ovaries were collected from slaughtered cows at a local abattoir. Oocytes were aspirated from follicles of 3–8 mm in diameter and transferred to maturation medium: tissue culture medium (TCM)-199 supplemented with 10% (v/v) fetal calf serum, 100 mg/mL l-cysteine, 20 mg/mL sodium pyruvate, gonadotropins (each 250 IU of eCG and hCG/mL), and 10 mg/mL epidermal growth factor, with or without 5 mM hypotaurine and taurine. Oocytes were cultured at 38.9°C in 5% CO2 in humidified air. After 24 h of culture, oocytes with polar body were selected and submitted to activation treatments. Oocytes were exposed to calcium ionomycin (5 μM for 5 min) followed by incubation with 6-DMAP (2 mM), roscovitine (50 μM), or 6-DMAP + roscovitine for 3.5 h. After activation, oocytes were cultured in mSOF medium containing 0.8% BSA at 38.9°C in 5% CO2, 5% O2 in humidified air for 16 h and stained with Hoechst 33342 or aceto-orcein for assessment of nuclear status. Nuclear status was recorded as follows: 1PB (polar body) + 1PN (pronucleus), 2PB + 1PN and others. Data were analyzed using chi-square test. The maturation rate of bovine oocytes cultured in maturation medium containing hypotaurine/taurine (89.3%, n = 84) was higher (P < 0.05) than those cultured without hypotaurine/taurine (72%, n = 93). In the oocytes matured with hypotaurine/taurine, the rates of diploid activation (1PB + 1PN) were 84% (n = 50) in oocytes treated with 6-DMAP + roscovitine, 78.6% (n = 56) with 6-DMAP, and 52% (n = 50) with roscovitine. In the oocytes matured without hypotaurine/taurine, the rates of diploid activation were 80% (n = 60) in oocytes treated with 6-DMAP + roscovitine, 72% (n = 50) with 6-DMAP, and 54% (n = 50) with roscovitine. The rates of diploid activation were not different in oocytes matured with or without hypotaurine/taurine and among activation treatments. The oocytes treated with roscovitine showed a lower rate (P < 0.05) of diploid activation and higher rate (39.3–40%) of second polar body extrusion (1PN + 2PB) than the other activation groups in both maturation conditions. Cleavage rates to 2-cell stage were 40–45% in all groups. Development rate of blastocysts were 7–10% in all the groups treated with 6-DMAP and 6-DMAP + roscovitine and no blastocysts were obtained from the groups treated with roscovitine alone. Hypotaurine/taurine are known to be stable and potent antioxidants, and have shown the properties of supporting oocyte maturation and further embryonic development (Guerin and Menezo 1995 Zygote 3, 333–43; Mizushima and Fukui 2001 Theriogenology 55, 1432–45). In this study, although the effectiveness of hypotaurine/taurine on promoting oocyte maturation was observed, there were no significant improvements in the rate of diploid activation in oocytes matured with hypotaurine/taurine. These results suggest that the nuclear status of activated oocytes may not have a direct relationship with the enhanced maturation condition. This work was supported by BioGreen 21 Program(#1000520030100000-1), Republic of Korea.

2015 ◽  
Vol 27 (1) ◽  
pp. 121 ◽  
Author(s):  
Y. M. Toishibekov ◽  
R. K. Tursunova ◽  
M. Sh. Yermekova

Advances in reproduction technologies, such as in vitro maturation, IVF, and in vitro culture, stimulated research for efficient cryopreservation techniques for mammalian oocytes. It is well known that the oocyte is the largest cell of an animal's body and as such, is full of water and, in many species, fat, making it difficult to cryopreserve. The objective of this work was to study the effect of vitrification for cryopreservation of the metaphase II plate (MPII) of sheep oocytes. Ovaries from 20 ewes of Kazakh Arkharo-Merino breed were acquired after slaughter and maintained at 37°C in TCM-199. The maturation medium was TCM-199, containing 1 mM of glutamine, 10% FBS, 5 μg mL–1 FSH, 5 μg mL–1 LH, 1 μg mL–1 oestradiol, 0.3 mM sodium pyruvate, and 100 mM cysteamine. The oocytes were incubated in 400 μL of medium in 4-well dishes covered with mineral oil. The IVM conditions were 5% CO2 in humidified air at 39°C for 24 h. Then they were placed for 10 min in a media with Hoechst 33342 (3 μg mL–1) and cytochalasin B (7 μg mL–1) to facilitate the enucleation of the MPII with a minimum volume of ooplasm. The MPII plates were divided into 2 groups: the vitrification group was exposed to vitrification media containing 1.12 M ethylene glycol (ET) + 0.87 M ME2SO for 5 min and was exposed in vitrification media containing 2.24 M ET + 1.75 M ME2SO for 5 min, and then in vitrification solution containing 4.48 M ET + 40% ME2SO + 0.25 M sucrose for 30 s. Oocytes were loaded into cryoloop and plunged into liquid nitrogen (LN2). Oocytes were thawed in a 25°C water bath and then placed in TCM-199 at 20% fetal bovine serum. After 15 min of incubation the oocytes were activated for extrusion of the second polar body in 1 mg mL–1 Ca ionophore for 5 min and washed for 5 min followed by 4 h in 6-DMAP (0.12 mM) + cycloheximide (0.6 μg mL–1). After activation the MPII were washed and cultured for 20 h. The control group received the same treatment, but they were not vitrified. Differences between the experimental groups were tested using Chi-squared test. Our research showed the expulsion of the second polar body after activation was observed in more than 62.2% of the MPII that were not vitrified (control group), whereas 40.5% of vitrified plates had expulsion of polar bodies (P < 0.05). These preliminary studies showed that it is possible to vitrify MPII plates. On the other hand, the drastic reduction of the volume of the sheep oocytes might make cryopreservation possible with greater efficiency.


Reproduction ◽  
2002 ◽  
pp. 235-240 ◽  
Author(s):  
T Azuma ◽  
T Kondo ◽  
S Ikeda ◽  
H Imai ◽  
M Yamada

EDTA saturated with Ca(2+), Fe(3+) or Cu(2+) can induce parthenogenetic activation of pig oocytes at the germinal vesicle stage, whereas EDTA saturated with Zn(2+), which is unable to chelate Zn(2+), does not, indicating that chelation of Zn(2+) with EDTA saturated with Ca(2+) (Ca-EDTA) in maturing pig oocytes plays a pivotal role in the induction of parthenogenetic activation of oocytes. In the present study, the involvement of Zn(2+) chelation in the induction of parthenogenetic activation of pig oocytes at the germinal vesicle stage was confirmed first by examining the effects of concomitant addition of Zn(2+), Cu(2+) or Ni(2+) at various concentrations together with 1 mmol Ca-EDTA l(-1) to the maturation medium. The titration experiments revealed that the pronuclear formation induced by 1 mmol Ca-EDTA l(-1) was completely inhibited by the addition of > 30 micromol Zn(2+) l(-1) to the medium, but not by the addition of Cu(2+) and Ni(2+) at any concentration examined. Second, bovine and mouse oocytes at the germinal vesicle stage were cultured in medium with or without 1 mmol Ca-EDTA l(-1) for 48 h to examine the effects of Ca-EDTA treatment on these oocytes during maturation culture. Most (70-86%) of the bovine oocytes that underwent germinal vesicle breakdown matured to the MII stage via the MI phase, regardless of whether Ca-EDTA was present for the first 24 h of culture. However, 61% of oocytes that had been cultured with Ca-EDTA for 48 h formed a pronucleus without a second polar body, whereas oocytes cultured in the absence of Ca-EDTA were not observed to form a pronucleus at any time during culture. However, even when mouse oocytes at the germinal vesicle stage were cultured for up to 48 h in maturation medium containing Ca-EDTA, pronuclear formation was not observed. Finally, when bovine oocytes that had been cultured with 1 mmol Ca-EDTA l(-1) for 48 h from the germinal vesicle stage were cultured further in medium without Ca-EDTA that was supplemented with 5% fetal calf serum, only 26% of the oocytes developed to the cleaved stage, and none could develop further.


Zygote ◽  
2014 ◽  
Vol 23 (3) ◽  
pp. 416-425 ◽  
Author(s):  
Yan Yun ◽  
Peng An ◽  
Jing Ning ◽  
Gui-Ming Zhao ◽  
Wen-Lin Yang ◽  
...  

SummaryOocyte-specific linker histone, H1foo, is localized on the oocyte chromosomes during the process of meiotic maturation, and is essential for mouse oocyte maturation. Bovine H1foo has been identified, and its expression profile throughout oocyte maturation and early embryo development has been established. However, it has not been confirmed if H1foo is indispensable during bovine oocyte maturation. Effective siRNAs against H1foo were screened in HeLa cells, and then siRNA was microinjected into bovine oocytes to down-regulate H1foo expression. H1foo overexpression was achieved via mRNA injection. Reverse transcription polymerase chain reaction (RT-PCR) results indicated that H1foo was up-regulated by 200% and down-regulated by 70%. Based on the first polar body extrusion (PB1E) rate, H1foo overexpression apparently promoted meiotic progression. The knockdown of H1foo significantly impaired bovine oocyte maturation compared with H1foo overexpression and control groups (H1foo overexpression = 88.7%, H1foo siRNA = 41.2%, control = 71.2%; P < 0.05). This decrease can be rescued by co-injection of a modified H1foo mRNA that has escaped from the siRNA target. However, the H1e (somatic linker histone) overexpression had no effect on PB1E rate when compared with the control group. Therefore we concluded that H1foo is essential for bovine oocyte maturation and its overexpression stimulates the process.


2005 ◽  
Vol 17 (2) ◽  
pp. 190
Author(s):  
W.C. Chang ◽  
J. Xu ◽  
S. Jiang ◽  
X.C. Tian ◽  
X. Yang ◽  
...  

The aim of this experiment was to determine the effect of the sucrose concentration (0 to 0.33 M) in the dilution medium on the viability, fertilizability, and development of vitrified bovine oocytes. Bovine oocyte-cumulus complexes were collected from slaughterhouse ovaries and in vitro-matured as reported previously. After 24-h maturation in TCM199-based medium under 5% CO2 humidified air at 39°C, these were exposed to hyaluronidase and carefully pipetted to remove all except the 3–5 innermost layers of cumulus. Oocytes were put into the pre-equilibration medium for 3 min and then into vitrification solution containing HEPES-buffered TCM199 supplemented with 20% FBS, ethylene glycol, and dimethylsulphoxide for 25–30 s; they were then vitrified by modified solid surface vitrification (Dinnyes et al. 2000 Biol. Reprod. 63, 513–518).The oocytes were warmed at 39°C by placing them in holding medium with 0, 0.08, 0.17, 0.25, or 0.33 M sucrose. Non-vitrified oocytes were used as controls. Oocytes were inseminated 30 min after warming, and the presumptive zygotes were cultured in CR1-aa medium supplemented with 6 mg/mL BSA at 39°C in a humidified atmosphere of 5% CO2, 5% O2, and 90% N2 for eight days. Data were analyzed by one-way ANOVA. As shown in Table 1, there was no significant difference in survival rate (P > 0.05) of the vitrified oocytes that were placed in dilution solution containing 0.17, 0.25, or 0.33 M sucrose and the non-treated controls. On Day 2 (fertilized on Day 0), cleavage to the 8-cell stage was similar for the 0.17, 0.25, and 0.33 M dilution groups, but the rates for all three were significantly lower (P < 0.05) than for the control group. The blastocyst rate on Day 8 was significantly higher for the 0.25 M group than for any other experimental group but still significantly lower than for the control. In conclusion, this study suggests that with this vitrification/warming procedure the optimum concentration of sucrose in the dilution solution is 0.25 M. Table 1. Oocyte survival after vitrification/warming and subsequent embryo development The authors would like to thank Ms Colleen Shaffer for the preparation of bovine oocytes.


2011 ◽  
Vol 23 (1) ◽  
pp. 128
Author(s):  
J. Lee ◽  
J. Park ◽  
Y. Chun ◽  
W. Lee ◽  
K. Song

Study for equine somatic cell nuclear transfer (SCNT) is an attractive field for research, but it has not been a major field of study because it is hard to obtain a sufficient number of ovaries and it takes a lot of time and effort for the recovery of oocytes matured in vivo by ovum pickup. It was reported that the bovine cytoplast could support the remodelling of equine donor cells (Zhou et al. 2007 Reprod. Domest. Anim. 42, 243–247). The objectives of this study are 1) to monitor the early events of equine SCNT by interspecies SCNT (isSCNT) between bovine cytoplast and equine donor cell, and 2) to investigate the developmental competence of isSCNT embryos. Bovine oocytes were recovered from the follicles of slaughtered ovaries, and matured in TCM-199 supplemented with 10 mU mL–1 FSH, 50 ng mL–1 EGF, and 10% FBS at 39°C under 5% CO2 in air for 22 h. Fibroblasts derived from bovine or equine skin tissues were synchronized at G0/G1 stage by contact inhibition for 72 h. After IVM, oocytes with polar body were enucleated and electrically fused with equine or bovine skin fibroblasts (1.0 kV cm–1, 20 μs, 2 pulses). Fused couplets were activated with 5 μM ionomycin for 4 min followed by 5 h culture in 10 μg mL–1 cycloheximide (CHX) and/or 2 mM 6-DMAP, and cultured in modified synthetic oviduct fluid (mSOF) at 39°C under 5% CO2, 5% O2, and 90% N2 for 7 days. All analyses were performed using SAS (version 9.1; SAS Institute, Cary, NC, USA). The cleavage rate of isSCNT embryos derived from equine cell was not different (252/323, 78.7%; P = 0.94) from that of SCNT embryos derived from bovine cell (230/297, 79.2%). However, the rate of isSCNT embryos developed to over 8-cell stage was lower (3.3%; P < 0.0001) than that of bovine SCNT embryos (39.4%), and total cell number of isSCNT embryos developed to over 8-cell stage was lower (17.5, n = 12; P < 0.0001) than that (80.8, n = 110) of bovine SCNT embryos. Also, the rate of blastocyst formation of isSCNT embryos (0/323; 0.0%) was lower (P < 0.0001) than that of bovine SCNT embryos (83/297; 29.3%). Meanwhile, reconstructed oocytes for isSCNT were fixed at 8 h after activation to investigate the formation of pseudo-pronucleus (PPN) after post-activation treatment with CHX or CHX+6-DMAP. The ratio of oocytes with single PPN after treatment with CHX+6-DMAP (26/35; 74.3%) was not different (P = 0.63) from that of oocytes treated with CHX (24/36; 68.1%). Although isSCNT embryos derived from bovine cytoplast and equine donor cell could not develop to more than the 16-cell stage, it is believed that the results of this isSCNT study could be used for the preliminary data regarding the reprogramming of donor cell in equine SCNT.


2015 ◽  
Vol 27 (1) ◽  
pp. 210
Author(s):  
M. Taniai ◽  
M. Takayama ◽  
O. Dochi ◽  
K. Imai

Bovine IVF embryos are evaluated morphologically using light microscopy just before transfer. However, this evaluation method is subjective, and an objective method with more certainty is needed. Sugimura et al. (PLoS ONE 2012 7, e36627) reported a promising system for selecting healthy IVF bovine embryo by using time-lapse cinematography and 5 prognostic factors. This study was to investigate the efficacy of a 2-step evaluation system of IVF embryos using microscopy for selecting high developmental competence IVF embryos. Cumulus-oocyte complexes (COC) were collected by ovarian follicular aspiration (2 to 5 mm diameter) obtained from a local abattoir. The COC (n = 488) were matured in TCM-199 medium supplemented with 5% calf serum (CS) and 0.02 IU mL–1 of FSH at 38.5°C for 20 h in an atmosphere of 5% CO2 (20 COC 100 µL–1 droplets). After 10 h of gametes co-culture (5.0 × 106 sperm cells mL–1), the presumptive zygotes were cultured in 125 µL of CR1 aa medium supplemented with 5% CS in well of-the-well culture dishes (AS ONE, Japan; 25 zygotes well–1) at 38.5°C in an atmosphere of 5% CO2, 5% O2, and 90% N2 for 9 days. Two-step evaluations of embryos were done at 27 and 55 h post-IVF (hpi). In the first step of evaluation, cleavage patterns at 27 hpi were categorized as mono-cell, 2-cell with even blastomeres and without fragments (normal cleavage), 2-cell with uneven blastomeres, and ≥3 blastomeres. During the second step of evaluation, embryos were classified by their number of blastomeres (2 to 5 cells, 6 to 8 cells, and >8 cells) and the absence or presence of multiple fragments (<20 or >20%) at 55 hpi. The data were analysed by chi-square test. The blastocyst rate (BL%) of embryos cleaved before 27 hpi (56.6%, n = 106) was higher (P < 0.01) than those of embryos cleaved after 27 hpi (37.0%, n = 235). A greater percentage (P < 0.05) of 2-cell embryos with normal cleavage (68.0%, n = 50) developed to blastocysts than from with =3 blastomeres at 27 hpi (40.6%, n = 32). Superior BL% (P < 0.01) was obtained from embryos categorized as 6- to 8-cell stage (58.6%, n = 140) and >8 cell stage (70.6%, n = 25) compared with those embryos at the 2- to 5-cell stage at 55 hpi (26.1%, n = 176). Embryos with no fragments (58.0%, n = 467) had higher BL% (P < 0.01) compared with those with <20% fragments (30.7%, n = 127) and having with >20% fragments (17.5%, n = 25) at 55 hpi. The highest of BL% was observed in embryos showing a normal cleavage to 2-cells with at 27 hpi and having >6 cells with no fragments at 55 hpi (95.2%, n = 21, P < 0.01). These results demonstrate that the 2-step evaluation system at 27 and 55 hpi using microscopy is an effective method for selecting IVF embryos with high developmental competence.


2014 ◽  
Vol 26 (1) ◽  
pp. 196
Author(s):  
K. R. L. Schwarz ◽  
R. C. Botigelli ◽  
F. C. Castro ◽  
M. R. Chiaratti ◽  
C. L. V. Leal

The sensitivity of IVP embryos to cryopreservation is often associated with lipid accumulation in the cytoplasm induced by the presence of fetal calf serum (FCS) during culture. Intracellular levels of cyclic (c)AMP and cGMP are involved in the regulation of lipolysis in adipocytes; high levels stimulate lipolysis whereas low levels lead to lipogenesis. Both nucleotides are present in bovine oocytes, together with the enzymes for their synthesis and degradation. The aim of this study was to analysis the effect of FCS on the cGMP pathway and the influence of cGMP on cytoplasmic lipids in bovine oocytes. In experiments 1 and 2, cumulus–oocyte complexes (COC) were cultured for 24 h in maturation medium with different proportions of FCS (2 and 10%) and a control group was matured with 0.4% BSA. After this period, transcripts for cGMP pathway were assessed by real-time PCR (GUCY1B3 and PDE5, cGMP synthesis and degradation enzymes, respectively; experiment 1) in oocytes and cumulus cells, and cGMP levels were measured in COC using commercial enzyme immunoassay kits (EIA; experiment 2). In experiments 3 and 4, COC were matured for 24 h with 0.4% BSA and different concentrations of the phosphodiesterase (PDE)5 inhibitor (0, 10–7, and 10–5 M sildenafil) to inhibit cGMP degradation and a control group was matured with 0.4% BSA. The nucleotide levels were measured in COC (experiment 3) and the oocytes were stained with Nile Red (1 μg mL–1) for evaluation of lipid content (experiment 4). Statistical analyses were performed by ANOVA followed by Tukey post hoc test using SAS software (SAS Institute Inc., Cary, NC, USA). Data for gene expression from 5 replicates and for cGMP measurements and lipid content from 3 replicates were log10-transformed into before analyses. The level of significance was 5%. The presence of FCS reduced GUCY1B3 expression in both cells and increased PDE5A in cumulus cells (P < 0.05). In experiment 2, the groups treated with 2 (0.64 fmol/COC) and 10% FCS (1.04 fmol/COC) showed decreased cGMP levels compared with control (9.46 fmol/COC; P < 0.05). In experiment 3, inhibition of PDE5A increased cGMP levels in the treated groups (36 and 56 fmol/COC for 10–7 and 10–5 M sildenafil, respectively) compared with control (9.5 fmol/COC; P < 0.05). Therefore, sildenafil showed inverse effects compared with FCS (experiment 2). In experiment 4, oocytes treated with 10–7 and 10–5 M sildenafil showed a reduced lipid content compared with controls (11.6 ± 9.4 v. 13.9 μm2 fluorescence intensity, respectively; P < 0.05). The results suggest that FCS in maturation medium affects the cGMP pathway, interfering with the transcription of genes that control its levels, which in turn results in nucleotide reduction. Inhibition of PDE5 increases cGMP levels and reduces the lipid content of oocytes, indicating that changes in this pathway caused by FCS may affect lipid metabolism of oocytes. More studies are underway to better understand this mechanism. The authors acknowledge FAPESP 2012/00170-0 for financial support.


2007 ◽  
Vol 19 (1) ◽  
pp. 283
Author(s):  
J. I. Park ◽  
Y. Jang ◽  
E. S. Lee

Oxidative stress is known to induce apoptotic cell death by reactive oxygen species (ROS) generated from in vitro culture systems. This study was conducted to evaluate the effect of Vitamin E (VitE), as antioxidant, on development of bovine embryos activated in vitro. Bovine ovaries were collected from slaughtered cows at a local abattoir. Oocytes were aspirated from follicles 3-8 mm in diameter and transferred to maturation medium: tissue culture medium (TCM)-199 supplemented with 10% (v/v) fetal calf serum, 100 mg/mL-1 l-cysteine, 20 mg/mL-1 sodium pyruvate, gonadotropins (250 IU each of eCG and hCG/mL), 10 mg/mL-1 epidermal growth factor, and 100 �M VitE. Oocytes were cultured at 38.9�C in 5% CO2 in humidified air. After 22 hours of culture, oocytes with polar bodies were selected and subjected to activation treatments. Oocytes were exposed to calcium ionomycin (5 �M for 5 min), followed by incubation with 6-DMAP (2 mM) for 3.5 hours in medium supplemented with or without VitE (100 �M). After activation, oocytes were cultured in mSOF medium containing 0.8% BSA at 38.9�C in 5% CO2, 5% O2 in humidified air for 7–8 days. Cell numbers were counted by the number of nuclei of blastocysts stained with Hoechst 33342, and apoptosis was detected by TUNEL assay using a MK500 kit (Takara Bio, Inc., Otsu, Shiga, Japan). Total cell and apoptotic cell number were determined under a fluorescence microscope. Data were analyzed using Student&apos;s t-test and chi-square test. The cleavage and blastocyst rates were significantly higher (P &lt; 0.05) after activation with VitE (78.1&percnt; and 16.3&percnt;, n &equals; 80) than without VitE (66.7&percnt; and 11.0&percnt;, n &equals; 60). Total cell numbers were also significantly higher (P &lt; 0.05) in blastocysts after activation with VitE (143.0 &plusmn; 34.02, n &equals; 21) than in those without VitE (127.63 &plusmn; 40.25, n &equals; 20). However, the percentage of TUNEL-positive (apoptotic) cells was similar between blastocysts activated with VitE (5.38 &plusmn; 2.22) and those without VitE (6.76 &plusmn; 1.98). The results of the present study demonstrate that vitamin E added to activation medium promoted further development of activated embryos, although its role in the alleviation of apoptosis remains unclear.


2017 ◽  
Vol 29 (1) ◽  
pp. 180
Author(s):  
T. Yamanouchi ◽  
S. Sugimura ◽  
H. Matsuda ◽  
M. Ohtake ◽  
Y. Goto ◽  
...  

Bovine oocytes obtained by ovum-pick-up (OPU) following follicle growth treatment (FGT) have improved quality and competence (Imai et al. 2008 Reprod. Fertil. Dev. 20, 182). However, the effect of the presence of FSH or epidermal growth factor (EGF) like peptide during in vitro maturation (IVM) on the developmental competence of FGT oocytes has not been well known. This study was undertaken to examine the developmental competence of FGT oocytes following IVM in the presence of FSH (recombinant human FSH) or EGF-like peptide (amphiregulin; Areg) and IVF. Japanese Black cows (n = 17) were used as donors. Five days after arbitrary OPU (opu group), follicles ≥8 mm in diameter were aspirated again, a controlled internal drug release (CIDR) was inserted into the vagina, and then pFSH was injected twice a day from the evening of Day 6 to the morning of Day 10 with decreasing doses (total of 20 AU; 4, 4, 3, 3, 2, 2, 1, 1 AU/day). On the evening of Day 8, PGF2α (0.5 mg of cloprostenol) was administered. On Day 11, oocytes were aspirated from follicles with ≥5 mm in diameter of the treated donors by OPU (fgt group). The cumulus-oocyte complexes (COC) were cultured in the absence (opu-cont and fgt-cont groups) or presence of 0.1 IU mL−1 FSH (opu-fsh and fgt-fsh groups) or 100 ng mL−1 Areg (opu-areg and fgt-areg groups) in IVM medium (mTCM199 containing 5 mg mL−1 BSA) for 20 to 22 h (1 COC/5 µL, total of 162–171 COC per group), and then co-cultured with 3 × 106 sperm/mL for 6 h. The presumptive zygotes were continued to culture in mCR1aa supplemented with 5% newborn calf serum for 216 h (1 zygote/5 µL) using micro-well culture dishes (Dai-Nippon-Print). When repeating this opu-fgt session in the same cow, an interval at least for 50 days was kept, and the session was performed 28 times. Statistical analysis was carried out by Mann-Whitney’s U-test (between opu and fgt groups) or Steel-Dwass test after Kruskal-Wallis test (among all groups). The number of follicles ≥5 mm increased in the fgt than opu group (17.8 v. 2.9; P < 0.01). The number of COC collected was not different between the opu and fgt groups (23.1 v. 19.6; P > 0.05). The blastocyst formation rate was higher in the fgt than opu group (36.9 v. 23.1%; P < 0.01). Within 6 groups, the blastocyst formation rate was higher in the fgt-fsh (43.3%; P < 0.01) and fgt-areg (39.5%; P < 0.05) groups than the opu-cont (16.3%) group. The rate in the fgt-fsh group was also higher than that in the opu-fsh group (43.3 v. 18.7%; P < 0.01). These results suggested that FGT improved the developmental competence of bovine oocytes, probably through improving the ability of the COC to react against FSH/Areg.


1995 ◽  
Vol 7 (5) ◽  
pp. 1073 ◽  
Author(s):  
A Boediono ◽  
S Saha ◽  
C Sumantri ◽  
T Suzuki

Mature bovine oocytes were activated with 7% ethanol followed by cytochalasin B or D treatment. Most oocytes extruded a second polar body and formed one pronucleus when treated with 7% ethanol alone [35/43 (81%)]. With ethanol followed by cytochalasin B or D, overall activation frequency was 70% (309/441), with activated oocytes containing two pronuclei. The cleavage rate was not significantly different between treatment with ethanol alone and ethanol followed by 5 micrograms mL-1 cytochalasin B, but it was significantly lower than in fertilized oocytes (P < 0.01). However, the blastocyst production rate was significantly different (P < 0.01) among the treatments. The incidence of parthenogenetic embryos with normal (diploid) complements and with chromosome anomalies (2N/4N) was 68% (17/25) and 32% (8/25) respectively, and this was not affected by cryopreservation treatment. The longitudinal diameter of aggregated-four embryos cultured in vitro was greater (P < 0.01) than aggregated-two or single embryos. One of the aggregated-four parthenogenetic embryos was further cultured in vitro and developed up to Day 27 after activation, with a diameter of 2980 microns. The aggregated-four parthenogenetic embryos were transferred to five recipients. The oestrus was prolonged in three recipients and they returned to oestrus on Day 57, 62 and 67 after the previous oestrus. These results indicate that aggregating parthenogenetic embryos can prolong their survival in vitro and in vivo.


Sign in / Sign up

Export Citation Format

Share Document