6 EQUINE SPERM INDUCES PRONUCLEAR FORMATION BY INTRACYTOPLASMIC SPERM INJECTION IN BOVINE, SWINE, AND FELINE OOCYTES INDEPENDENTLY OF CHEMICAL ACTIVATION ASSISTANCE

2015 ◽  
Vol 27 (1) ◽  
pp. 95
Author(s):  
M. B. Rodríguez ◽  
A. Gambini ◽  
R. J. Bevacqua ◽  
D. F. Salamone

Interspecific intracytoplasmic sperm injection (ICSI) is a valuable tool to study early events of fertilization in species for which oocyte availability is reduced. Equine in vitro fertilization remains unsuccessful and ICSI is the technique of choice for the in vitro production of high-value embryos. Therefore, the objective of this study was to evaluate the rate of pronuclear (PN) formation after ICSI with stallion sperm in bovine, swine and feline oocytes with or without chemical activation assistance. Ovaries from cows and pigs were collected at abattoirs whereas gonads from female domestic cats were obtained from ovariectomized animals at veterinary sterilization centers. Cumulus-oocyte complexes were matured in TCM-199 supplemented following standard protocols for each species. ICSI was performed in 100-μL drops of TALP-HEPES, using frozen-thawed semen from one stallion. Spermatozoa were held separate in 3-μL droplets of 7% (vol/vol) polyvinylpyrrolidone, where one of them was immobilized by swiping the injection pipette across its tail, and then injected into the matured oocyte. After ICSI, some oocytes were chemically activated with 5 μM ionomycin for 4 min (cow and cat) or with an electric pulse (sow) followed by 3 h in culture medium to allow extrusion of the second polar body and then exposure to 1.9 mM 6-DMAP solution for 3 h. Embryos were cultured in SOF medium. After 17 h of culture, embryos were stained with propidium iodide to identify the percentage of oocytes activated and with PN. Haploid and diploid parthenogenetic controls were included. Cleavage (48 h after activation) and blastocyst formation (7–8 days) of the partenogenetic control groups were assessed. There were no statistical differences (chi-squared analysis) in PN formation between the activated and nonactivated groups within species. When the activated group was compared between the different species, no differences were observed. However, for the nonactivated group, significant differences were observed between species. The feline oocyte showed the higher percentage of PN and activation, whereas the bovine oocyte exhibited the lower rate of PN formation (cat: 22/27, 81.48%; swine: 19/39, 71.64%; cow:18/63, 43.07%). Our results suggest that the feline oocyte can be used as model to study fertilization events associated with the stallion sperm due to the higher efficiency in supporting PN formation. Our results indicate that the equine sperm is capable of inducing PN formation in these 3 species without further chemical activation assistance.

2009 ◽  
Vol 21 (1) ◽  
pp. 203
Author(s):  
Y. Y. Liang ◽  
D. N. Ye ◽  
C. Laowtammathron ◽  
T. Phermthai ◽  
R. Parnpai

Intracytoplasmic spern injection (ICSI) in the buffalo has not yet been well examined. Several factors involved affect the success rates of this technique, particularly the postinjection activation procedure. The objective of this study was to evaluate the effects of chemical activation treatments on in vitro development of oocytes after ICSI. A single spermatozoa was injected into the cytoplasm of an in vitro-matured oocyte using a micromanipulator under an inverted microscope. The ICSI oocytes were assigned to the following chemical activation treatments: (1) exposed to 5 μm ionomycin (Io) in Emcare medium for 5 min and placed in Emcare medium for 3 h, or (2) exposed to 7% ethanol (EtOH) in Emcare medium for 5 min and placed in Emcare medium for 3 h. The treated oocytes that extruded a second polar body were then selected and cultured either in (A) 1.9 mm 6-dimethylaminopurine (6-DMAP) in mSOF medium for 3 h, or (B) 10 μg mL–1 of cychloheximide (CHX) for 5 h. The treated oocytes were further cultured in mSOF medium supplemented with 3 mg mL–1 of fatty acid-free BSA at 38.5°C under a humidified atmosphere of 5% O2, 5% CO2, and 90% N2 for 2 d. Thereafter, 8-cell-stage embryos were selected and co-cultured with buffalo cumulus cells in mSOF medium at 38.5°C under a humidified atmosphere of 5% CO2 in air for another 5 d. The medium was changed daily and the development of embryos was recorded at the same time the medium was changed. The sham-injected oocytes were treated and cultured along with ICSI oocytes. With 8 replications for each activation treatment, 336 oocytes were used for ICSI. With 6 replications for each activation treatment, 211 oocytes were used for sham injection. The cleavage of ICSI oocytes treated with Io + 6-DMAP, EtOH + 6-DMAP, and EtOH + CHX was 76.2, 69.4, and 78.3%, respectively, which was significant higher (P < 0.01) than ICSI oocytes treated with Io + CHX (52.4%) and also significant higher (P < 0.01) than sham-injected oocytes in all treatments. The highest blastocyst rate was observed in ICSI oocytes treated with Io + 6-DMAP (28.6%), which was not significantly different from ICSI oocytes treated with EtOH + CHX (24.4%). The blastocyst rates of ICSI oocytes treated with Io + 6-DMAP and EtOH + CHX were significantly higher than ICSI oocytes treated with Io + CHX (5.9%) and EtOH + 6-DMAP (16.5%) and also were significantly higher than sham-injected oocytes in all treatments. In conclusion, our study demonstrated that activated ICSI of swamp buffalo oocytes with Io + 6-DMAP or EtOH + CHX gave the highest cleavage and blastocyst rates. This work was supported by the Thailand Research Fund and Suranaree University of Technology.


Author(s):  
Yuki Shiraiwa ◽  
Noritoshi Enatsu ◽  
Kazuki Yamagami ◽  
Koyu Furuhashi ◽  
Toshiroh Iwasaki ◽  
...  

Background: Although rescue intracytoplasmic sperm injection (r-ICSI) is extensively used worldwide, the indication of r-ICSI and its optimal timing remains obscure. This study aimed to assess the outcomes of r-ICSI following in vitro fertilization in different timings when fertilization is confirmed. Methods: This study included 5,156 cycles (47,785 eggs). Fertilization was confirmed by polar body analysis after 4 and 6 hr of coincubation of the sperm and oocyte. Oocytes that underwent IVF were divided into two groups based on the time when a second polar body was detected in more than 30% of all oocytes (Four-hr group and six-hr group). If the second polar body was not detected or was present in less than 30% of all oocytes after six hr of coincubation, rescue-ICSI (r-ICSI) was performed for oocytes without a second polar body (r-ICSI group). Results: The fertilization rates of two pronuclear (2PN) oocytes in the three groups (Four-hr group, six-hr group, and r-ICSI group) were 70.7%, 51.3%, and 58.0%, respectively. The blastocyst formation rates were 62.8%, 53.4%, and 42.9%, respectively. Conclusion: Performing r-ICSI after six hr of coincubation can salvage cases with fertilization failure in IVF. The higher fertilization rate of r-ICSI indicates that all oocytes without signs of fertilization after six hr of coincubation should undergo r-ICSI.


2015 ◽  
Vol 27 (1) ◽  
pp. 121 ◽  
Author(s):  
Y. M. Toishibekov ◽  
R. K. Tursunova ◽  
M. Sh. Yermekova

Advances in reproduction technologies, such as in vitro maturation, IVF, and in vitro culture, stimulated research for efficient cryopreservation techniques for mammalian oocytes. It is well known that the oocyte is the largest cell of an animal's body and as such, is full of water and, in many species, fat, making it difficult to cryopreserve. The objective of this work was to study the effect of vitrification for cryopreservation of the metaphase II plate (MPII) of sheep oocytes. Ovaries from 20 ewes of Kazakh Arkharo-Merino breed were acquired after slaughter and maintained at 37°C in TCM-199. The maturation medium was TCM-199, containing 1 mM of glutamine, 10% FBS, 5 μg mL–1 FSH, 5 μg mL–1 LH, 1 μg mL–1 oestradiol, 0.3 mM sodium pyruvate, and 100 mM cysteamine. The oocytes were incubated in 400 μL of medium in 4-well dishes covered with mineral oil. The IVM conditions were 5% CO2 in humidified air at 39°C for 24 h. Then they were placed for 10 min in a media with Hoechst 33342 (3 μg mL–1) and cytochalasin B (7 μg mL–1) to facilitate the enucleation of the MPII with a minimum volume of ooplasm. The MPII plates were divided into 2 groups: the vitrification group was exposed to vitrification media containing 1.12 M ethylene glycol (ET) + 0.87 M ME2SO for 5 min and was exposed in vitrification media containing 2.24 M ET + 1.75 M ME2SO for 5 min, and then in vitrification solution containing 4.48 M ET + 40% ME2SO + 0.25 M sucrose for 30 s. Oocytes were loaded into cryoloop and plunged into liquid nitrogen (LN2). Oocytes were thawed in a 25°C water bath and then placed in TCM-199 at 20% fetal bovine serum. After 15 min of incubation the oocytes were activated for extrusion of the second polar body in 1 mg mL–1 Ca ionophore for 5 min and washed for 5 min followed by 4 h in 6-DMAP (0.12 mM) + cycloheximide (0.6 μg mL–1). After activation the MPII were washed and cultured for 20 h. The control group received the same treatment, but they were not vitrified. Differences between the experimental groups were tested using Chi-squared test. Our research showed the expulsion of the second polar body after activation was observed in more than 62.2% of the MPII that were not vitrified (control group), whereas 40.5% of vitrified plates had expulsion of polar bodies (P < 0.05). These preliminary studies showed that it is possible to vitrify MPII plates. On the other hand, the drastic reduction of the volume of the sheep oocytes might make cryopreservation possible with greater efficiency.


2008 ◽  
Vol 20 (1) ◽  
pp. 118 ◽  
Author(s):  
M. C. Gómez ◽  
N. Kagawa ◽  
C. E. Pope ◽  
M. Kuwayama ◽  
S. P. Leibo ◽  
...  

The ability to cryopreserve female gametes efficiently holds immense economic and genetic implications. The purpose of the present project was to determine if domestic cat oocytes could be cryopreserved successfully by use of the Cryotop method. We evaluated (a) cleavage frequency after in vitro fertilization (IVF) v. intracytoplasmic sperm injection (ICSI) of in vivo- and in vitro-matured oocytes after vitrification, and (b) fetal development after transfer of resultant embryos into recipients. In vivo-matured cumulus–oocyte complexes (COCs) were recovered from gonadotropin-treated donors at 24 h after LH treatment, denuded of cumulus cells, and examined for the presence of the first polar body (PB). In vitro-matured COCs were obtained from ovaries donated by local clinics and placed into maturation medium for 24 h before cumulus cells were removed and PB status was determined. Oocytes were cryopreserved by the Cryotop method (Kuwayama et al. 2005 Reprod. Biomed. Online 11, 608–614) in a vitrification solution consisting of 15% DMSO, 15% ethylene glycol, and 18% sucrose. For IVF, oocytes were co-incubated with 1 � 106 motile spermatozoa mL–1 in droplets of modified Tyrode's medium in 5% CO2/air at 38�C (Pope et al. 2006 Theriogenology 66, 59–71). For ICSI, an immobilized spermatozoon was loaded into the injection pipette, which was then pushed through the zona pellucida into the ooplasm. After a minimal amount of ooplasm was aspirated into the pipette, the spermatozoon was carefully expelled, along with the aspirated ooplasm. After ICSI, or at 5 or 18 h post-insemination, in vivo- and in vitro-matured oocytes, respectively, were rinsed and placed in IVC-1 medium (Pope et al. 2006). As assessed by normal morphological appearance after liquefaction, the survival rate of both in vivo- and in vitro-matured oocytes was >90% (93–97%). For in vitro-matured oocytes, cleavage frequencies after IVF of control and vitrified oocytes were 73% (16/22) and 53% (30/57), respectively, as compared to 68% (19/28) after ICSI of vitrified oocytes (P > 0.05). For in vivo-matured oocytes, cleavage frequencies after IVF of control and vitrified oocytes were 55% (18/33) and 35% (6/17), respectively, compared to 50% (10/20) after ICSI of vitrified oocytes (P > 0.05). At 18–20 h after ICSI, 18 presumptive zygotes and four 2-cell embryos derived from vitrified in vitro-matured oocytes and 19 presumptive zygotes produced from seven in vivo-matured and 12 in vitro-matured vitrified oocytes were transferred by laparoscopy into the oviducts of two recipients at 24–26 h after oocyte retrieval. The two recipients were 9-month-old IVF/ET-derived females produced with X-sperm sorted by flow cytometry. At ultrasonography on Day 22, both recipients were pregnant, with three live fetuses observed in one recipient and one live fetus seen in the second recipient. On Day 63 and Day 66 of gestation, four live kittens were born, without assistance, to the two recipients. The one male and three female kittens weighed an average of 131 g. In summary, in vivo viability of zygotes/embryos produced by ICSI of cat oocytes vitrified by the Cryotop method was demonstrated by the birth of live kittens following transfer to recipients.


2013 ◽  
Vol 25 (1) ◽  
pp. 260 ◽  
Author(s):  
I. Grad-Mandryk ◽  
J. Kosenyuk ◽  
B. Gajda

In vitro production of porcine embryos is still relatively inefficient. The main reasons for this limited performance are polyspermy after IVF and the poor developmental ability of obtained zygotes. Intracytoplasmic sperm injection (ICSI) is one possible solution to eliminate polyspermy. The aim of this study was to compare the developmental competence of pig zygotes, total cell number, and DNA fragmentation of pig blastocysts derived from IVF or ICSI. Cumulus–oocyte complexes were obtained by aspiration from antral follicles of ovaries collected from slaughtered gilts. The oocytes were then cultured in modified TC-199 medium to metaphase II for 42 h. Semen for IVF was incubated in modified capacitation medium (M199) for 1 h. The sperm fraction (1 × 106 cells mL–1) was introduced into droplets containing oocytes, and then gametes were co-incubated for 4 h in modified TC-199 medium. Intracytoplasmic sperm injection was performed using a mechanical micromanipulator (Research Instruments Limited, Cornwall, UK). Micromanipulation was carried out in modified NCSU-37 medium. The tails of spermatozoa were broken, and then single spermatozoa were aspirated into the injection pipette. The oocyte was fixed by a holding pipette, and the sperm head was then introduced into the oocyte cytoplasm. Presumptive zygotes were cultured in vitro for 144 h in NCSU-23 medium. The embryo quality criteria were developmental competence (morula and blastocyst rates), total cell number per blastocyst, and degree of apoptosis assessed by TUNEL staining. Data were analysed by chi-squared test. The experiment was performed on 136 zygotes (6 replicates) obtained after IVF and 83 zygotes (4 replicates) obtained after ICSI. Percentages of embryos developed to the morula and blastocyst stages were 42.3 ± 6.1 and 28.8 ± 4.7 after IVF, respectively, and 51.7 ± 15.4 and 34.5 ± 18.9 after ICSI, respectively (no differences were observed). Significant differences were noticed in total number of cells per blastocyst between embryos after IVF and ICSI (33.7 ± 5.39 v. 22.8 ± 3.22; P < 0.01). However, there was no difference in the degree of apoptosis between IVF and ICSI embryos (5.14 ± 3.49 and 6.14 ± 4.88, respectively). Our preliminary studies demonstrated a higher proportion of cell numbers in IVF-derived embryos compared with those produced by ICSI, but the developmental competence and degree of apoptosis, as evaluated by the TUNEL method, in both groups were comparable. This study was funded by project N N311 516140 by the NCN, Poland.


2015 ◽  
Vol 27 (1) ◽  
pp. 249
Author(s):  
M. E. Arias ◽  
R. Sanchez ◽  
R. Felmer

Intracytoplasmic sperm injection (ICSI) is an assisted reproductive technique that has been used with considerable success in humans; however, in the bovine species the efficiency of this technique is far from optimal. The objective of the present study was to evaluate the effect of 4 chemical activation treatments, 6-dimethylaminopurine (DMAP), cycloheximide (CHX), anisomycin (ANY), and ethanol (EtOH) on the pronuclear formation and embryo development of bovine embryos generated by ICSI. Cumulus-oocyte complexes were aspirated from abattoir ovaries, selected, and matured in 400-µL drops of standard TCM-199 maturation medium for 22 h at 38.5°C and 5% CO2. The ICSI was performed by a standard procedure. Injected oocytes were randomly distributed and activated by 5 µM ionomycin for 5 min (Io) followed by i) 5 µg mL–1 CHX for 5 h (Io/CHX), ii) 3 h window followed by a second Io treatment plus 1.9 mM DMAP for 4 h (2Io/DMAP), iii) 1 µg mL–1 ANY for 5 h (Io/ANY), and iv) 3 h window followed by 7% ethanol (Io/EtoH). Embryos were cultured in 50-µL drops of KSOM medium under mineral oil at 38.5°C and 5% CO2, 5% O2, and 90% N2. Cleavage was recorded at 72 h and blastocyst rate at 192 h. Pronuclear formation analysis was carried out at 18 hpa with Hoechst staining. An oocyte was considered fertilized when 2 polar bodies and 1 female and 1 male pronucleus (or a decondensed sperm head) could be observed. The data were transformed to arcsine, analysed by ANOVA, and means were compared using Tukey's test with Statgraphics Plus 2 Software. Results with a total of 431 injected oocytes (114, 104, 101, and 112 for DMAP, CHX, ANY, and EtOH, respectively) showed differences in cleavage (P < 0.01) in DMAP, CHX, and ANY treatments (86, 72, and 78%, respectively), relative to EtOH (12%). Similarly, the rate of blastocysts/injected oocyte at 192 h was higher with DMAP, CHX, and ANY (41, 20, and 32%, respectively), relative to EtOH (4%). Sham-injected oocytes showed cleavage and blastocyst rates of 67, 43, 68, and 12% and 32, 11, 19, and 5%, for DMAP, CHX, ANY, and EtOH, respectively. Despite the higher developmental rate observed with DMAP, pronuclear formation assessment revealed that fertilization rate was higher in CHX (87%) and ANY (75%) treatments relative to DMAP (35%). In conclusion, the results of the present study show that activation of bovine oocytes after ICSI is more efficient with DMAP and ANY, compared with CHX and EtOH.Provision of ovaries by our local slaughterhouse (Frigorifico Temuco, Chile) and funding support from FONDECYT 1120241 CONICYT, Chile, are gratefully acknowledged.


Zygote ◽  
2019 ◽  
Vol 28 (1) ◽  
pp. 83-85
Author(s):  
Y. Ohta-Takada ◽  
Y. Nagao ◽  
S. Kito

SummaryWe previously reported that high concentrations (≥3.42 mM) of calcium during in vitro fertilization (IVF) disturbed the extrusion of the second polar body (PBII) in C3H/He inbred mice. In this study, the substrain specificity of this phenomenon was examined under 1.71–6.84 mM calcium concentration in ova from six C3H/He mouse commercially available substrains in Japan. PBII extrusion in ova from J substrains was not affected by calcium concentrations (<10% at any calcium level), but was grossly disturbed at high calcium levels in the ova of other substrains. This result has practical applications for the efficient production of normal zygotes by IVF, therefore contributing to the reduction in the numbers of donor animals for further zygote or embryo manipulation. Care must be taken in choosing IVF medium for particular strains and substrains.


2004 ◽  
Vol 16 (2) ◽  
pp. 195
Author(s):  
Y.H. Choi ◽  
D.D. Varner ◽  
K. Hinrichs

Research on in vitro culture of equine embryos has been scant, due to failure of equine in vitro fertilization to be repeatably successful. We have recently obtained high fertilization rates of equine oocytes via intracytoplasmic sperm injection (ICSI) using a piezo drill (Choi et al., 2002 Reproduction 123, 455–465). Culture of presumptive zygotes in G1.2/2.2 medium resulted in 63% cleavage and an average of 15 cells at 4d, but only 2 to 9% blastocyst development at 7 days (Choi et al., 2003 Theriogenology 59, 1219–1229). In the present study, we evaluated the effect of two different culture media, G1.3/G2.3 v. DMEM/F-12, with or without FBS, on blastocyst development after ICSI. Oocytes were collected from slaughterhouse-derived ovaries by follicular scraping and were matured in vitro for 24h in M199 with 10% FBS and 5μUmL−1 FSH. After culture, oocytes having a polar body (198/305; 65%) were fertilized by ICSI with frozen-thawed equine sperm using a piezo drill. Presumptive zygotes were cultured in 1 of 4 media: G1.3/G2.3 (which includes 0.8% BSA) with or without 10% FBS, or in DMEM/F-12 with 0.5% BSA, with or without 10% FBS. Culture was performed in microdroplets at 5μL/zygote under oil at 38.2°C in an atmosphere of 5% CO2, 5% O2 and 90% N2 for 7.5 days. In G1.3/2.3 treatments, G1.3 media were completely refreshed at 48h, zygotes were transferred to G2.3 (with or without FBS as per the first stage) at 96h, and were completely refreshed with the same media at 144h. In DMEM/F-12 treatments, media were completely refreshed every other day. Three to 5 replicates were performed in each treatment, and data were analyzed by chi-square test. There were no significant differences in cleavage rates (59–64%) among treatments. The rate of development to blastocyst, per oocyte injected, in G1.3/G2.3/BSA (1/49, 2%) was significantly lower (P&lt;0.05) than that for the other three treatments: G1.3/2.3/BSA/FBS (9/49, 18%), DMEM/F-12/BSA (9/50, 18%), or DMEM/F-12/BSA/FBS (10/50, 20%). There was no significant difference in blastocyst development among the latter three treatments. These findings indicate that G1.3/2.3 media with BSA only do not adequately support growth of equine embryos. Development of up to 20% of injected oocytes to the blastocyst stage in G media supplemented with FBS, in DMEM/F-12/BSA or in DMEM/F-12/BSA/FBS represents the highest in vitro equine blastocyst rate in medium alone (i.e. without co-culture) yet reported. The success of DMEM/F-12 as an embryo culture medium may provide a relatively simple basis for equine in vitro culture programs. To determine whether this medium was able to support further developmental competence, we cultured equine embryos resulting from nuclear transfer of in vitro-matured oocytes in DMEM/F-12+10% FBS (without BSA). We transferred 4 resulting blastocysts to recipient mares by transcervical transfer; one pregnancy is ongoing at 230d gestation at the time of this writing. This work was supported by the Link Equine Research Endowment Fund, Texas A&amp;M University.


2009 ◽  
Vol 21 (1) ◽  
pp. 247
Author(s):  
R. J. Bevacqua ◽  
F. Pereyra-Bonnet ◽  
R. Olivera ◽  
D. F. Salamone

ICSI-mediated gene transfer is a powerful technique used to produce transgenic mice and pigs. However, this method of transgenesis has not been applied in bovine due to low embryo development, which is presumed to be a consequence of a failure in sperm factor delivery after ICSI in this species. To bypass this problem, we assisted ICSI with chemical activation, employing two Ionomycin (Io) exposures and 6-Dimethylaminopurine (DMAP) or a novel drug, Dehydroleucodine (DhL). Cumulus–oocyte complexes were aspirated from ovaries obtained from a local slaughterhouse and in vitro matured in bicarbonate-buffered TCM-199 containing 10% FBS, 10 μg mL–1 FSH, 0.3 mm sodium pyruvate, 100 μm cysteamine and 10 UI mL–1 penicillin. IVM conditions were 6% CO2 in humidified air at 39°C for 24 h. MII oocytes were selected and used immediately for ICSI. Sperm samples were frozen/thawed by standard procedures. Coincubation of spermatozoa with DNA construction (pCX-EGFP) was carried out in Na citrate 2.8%, with 0.5 μg plasmid million–1 spermatozoa for 5 min at 0°C. Then, spermatozoa were used for ICSI. Injected oocytes were activated in 5 μm Io for 4 min and placed in TCM-199 for 3 h to allow second polar body emission. Afterwards, some of the oocytes were subjected to a second exposure of Io. Oocytes exposed once or twice to Io were then incubated with 2 mm DMAP (groups Io-DMAP and 2Io-DMAP) or 5 mm DhL (groups Io-DhL and 2Io-DhL) for 3 h. Control groups (Io and 2Io) were not treated with DMAP or DhL. Embryos were cultured in the IVM droplets. EGFP expression was daily evaluated in fluorescence microscope under blue light (488 nm). Significant differences between groups were evaluated by Fisher test (Table 1). DhL chemical activation improved neither development nor transgenesis rates. The double Io exposure significantly improved embryo development. The second exposure to Io previous chemical activation with DMAP resulted in an increase in the percentage of EGFP-expressing embryos. Our results indicate that activation with double Io-DMAP could be considered an alternative assistance for ICSI mediated gene transfer in bovine. Table 1.Effect of activation assisting transgenic ICSI on development and expression of bovine embryos


2008 ◽  
Vol 20 (1) ◽  
pp. 145 ◽  
Author(s):  
C. Herrera ◽  
M. Revora ◽  
L. Vivani ◽  
M. H. Miragaya ◽  
C. Quintans ◽  
...  

High merit mares obtain their utmost productive value at the same time their reproductive soundness diminishes. The aim of our study was to compare the developmental competence of equine oocytes from young and old mares after intracytoplasmic sperm injection (ICSI) and in vitro culture. Ovaries from young and old mares were obtained from a pool of slaughterhouse animals that have been previously selected by overall good body condition, reproductive status, and age. Young mares were 3 to 8 years old, and old mares were more than 15 years old. The age of all mares was determined by teeth observation and reproductive status by ultrasonography. Oocytes were obtained from ovaries 1 h postmortem by individual dissection of follicles between 10 and 25 mm and scraping of the follicle wall with a bone curette. Recovered oocytes were matured in vitro for 24–30 h, and all oocytes with an intact cytoplasm and a visible polar body were subject to ICSI and cultured for 7.5 days in SOFm. The maturation rate, cleavage, and embryo development rate and mean number of blastomeres at 7.5 days of culture were compared between oocytes and embryos from young and old mares. Maturation, cleavage, and developmental rates were analyzed by Chi Square and Fisher exact test, whereas the mean number of blastomeres at 7.5 days of culture was compared by one way ANOVA and t-test. A total number of 54 oocytes from young mares and 37 oocytes from old mares were obtained. There were no significant differences between the maturation, cleavage, or embryo development rates between young (79.63, 56.41, and 18.18%) and old (91.89, 63.33, and 15.79%) mares. In addition, the mean number of cells on embryos from each group did not differ significantly (57.75 v. 81; young v. old). Our preliminary results show that similar in vitro rates are achieved when oocytes from young or old mares are matured and fertilized in vitro by ICSI. This does not correlate with the reproductive senescence in old mares and the result obtained with other reproductive techniques. Further studies will determine if pregnancies are equally achieved using in vitro produced embryos from both age groups.


Sign in / Sign up

Export Citation Format

Share Document