134 EFFECTS OF VITAMIN E AND VITAMIN C ON THE DEVELOPMENTAL COMPETENCE OF BUFFALO (BUBALUS BUBALIS) EMBRYOS DERIVED FROM PARTHENOGENETIC ACTIVATION, IN VITRO FERTILIZATION, AND NUCLEAR TRANSFER

2011 ◽  
Vol 23 (1) ◽  
pp. 171
Author(s):  
F. Lu ◽  
Z. Zhang ◽  
S. Zhang ◽  
N. Li ◽  
J. Jiang ◽  
...  

The purpose of this study was to explore the effects of vitamin E (VE) and vitamin C (VC) on the in vitro development of embryos derived from parthenogenetic activation (PA), in vitro fertilization (IVF), and somatic cell nuclear transfer (NT) in buffalo (Bubalus bubalis). Buffalo oocytes obtained from ovaries at slaughter were matured in vitro for 22 to 24 h. After maturation, oocytes were separated to 3 groups: one group of oocytes was fertilized in vitro with buffalo sperm; one group of oocytes was parthenogenetically activated by exposing them to 5 μM ionomycin for 5 min and then cultured in 2 mM 6-DMAP for 3 h; the other group of oocytes was enucleated, and fibroblasts in DMEM + 10% FBS for 4 to 5 days were transferred into enucleated oocytes by electronic fusion (100 v mm–1, 15 μs, and 3 pulses). After fusion, the activation of reconstructed embryos was induced by exposure to 5 μM ionomycin for 5 min and then cultured in 2 mM 6-DMAP for 3 h. The embryos of PA, IVF, and NT were respectively cultured in the culture medium (CM) containing different concentrations of VE, VC, or VE + VC for 7 to 9 days to evaluate embryonic development. As a result, when the embryos were cultured in the CM with different concentrations of VE (0, 50, 100, 150, and 200 μM), the blastocyst development rate of the embryos derived from PA, IVF, and NT gradually rose with increasing concentrations of VE and reached the highest amount [PA: 32.9% (81/246); IVF: 21.4% (45/210); and NT: 21.1% (47/223)] in the group containing 150 μM of VE; it was significantly higher than that of other groups (P < 0.05). When the different concentrations of VC (0, 50, 100, 150, and 200 μM) were added to the CM, the blastocyst development rate of the embryos derived from PA, IVF, and NT also enhanced according to the increasing concentration of VC, and more embryos developed to blastocysts in the group containing 150 μM of VC [PA: 31.2% (72/231); IVF: 20.2% (43/213); NT: 19.8% (48/243)] than in the other groups (P < 0.05). Compared with the control group (0 μM), the blastocyst rate of PA and IVF, as well as NT embryos, cultured in the CM with 150 μM VE + 150 μM VC groups was significantly higher (P < 0.05), but there were no significant differences in the percentage of blastocysts among groups of the 150 μM VE, 150 μM VC, and 150 μM VE + 150 μM VC (P > 0.05). These results indicated that adding VE (150 μM), VC (150 μM), or VE (150 μM) + VC (150 μM) in the CM could efficiently enhance the developmental competence of buffalo embryos during in vitro culture. This work was funded by China High Technology Development Program (2007AA100505), Guangxi Science Foundation (0718005-3A), Fok Ying Tung Education Foundation (111034).

2006 ◽  
Vol 18 (2) ◽  
pp. 129 ◽  
Author(s):  
G. Jang ◽  
M. Kim ◽  
H. J. Oh ◽  
F. Y. Heru ◽  
M. S. Hossein ◽  
...  

The present study was performed to collect in vivo matured canine oocytes for somatic cell nuclear transfer (SCNT) and to investigate the developmental competence of canine parthenogenetic and SCNT embryos as the preliminary research for producing cloned dog. The day of ovulation as described by Hase et al. (2000 J. Vet. Med. Sci. 62, 243-248) was determined by serum progesterone levels and at that time vaginal cytology was performed to assess the cornified index. In vivo-matured oocytes were recovered by retrograde flushing of the oviducts at around 48 h (n = 20) or 72 h (n = 25) after the estimated time of ovulation. Overall size of each oocyte, as well as ooplasmic diameter, zona pellucida thickness, and perivitelline space width, was determined after removing the cumulus cells by pipetting (Exp. 1). To determine activation protocols, two treatments, (1) chemical activation (10 �M Ca ionophore for 4 min, followed by incubation for 4 h with 1.9 mM 6-dimethylaminopurine) and (2) electrical stimulation (3.1?3.4 kV/cm in 0.25M mannitol solution), were evaluated to induce parthenogenetic activation of oocytes (Exp. 2). Donor cells were obtained from the primary cell culture of a canine ear skin biopsy, and SCNT was performed according to our laboratory procedures (Jang et al. 2004 Theriogenology 62, 512-521). Three voltages (1.7?2.0 kV/cm, 2.1-2.4 kV/cm, and 3.1-3.4 kV/cm) were tested for fusion. The fused couplets were subjected to chemical or electrical stimulation as in parthenogenetic activation and in vitro developmental competence was monitored (Exp. 3). As a result, more in vivo-matured canine oocytes were obtained at 72 h (92%) than at 48 h (15%) after ovulation; the 72-h occytes had progesterone concentrations of 4-8 ng/mL and a cornified index (vaginal cytology) of 83.34. The average number of oocytes recovered was 12 and sizes of ooplasmic diameter, cytoplasm, zona pellucida, and perivitelline space in in vivo canine-matured oocytes (n = 120) were 178.8 � 9.3 �m, 125.0 � 8.2 �m, 21.7 � 3.7 �m, and 12.7 � 3.5 �m, respectively. Parthenogenetically activated oocytes developed to the 16-cell and morula stages, but failed to develop to the blastocyst stage. Among the three voltages, in the highest voltage (75.2%) the number of fused couplets was increased compared to either of the other voltages (33.3% and 44.0%). Cleavage rates (60.9% vs. 58.0%) of cloned embryos were not significantly affected by method of activation. In terms of in vitro developmental competence, cloned embryos developed to the 16-cell or morula stage in vitro after electrical or chemical activation, respectively. In conclusion, in the present study we demonstrated that measurement of progesterone levels, in combination with evaluation of vaginal cytology, can be used to determine the estimated time of ovulation in bitches. In addition, we determined fusion/activation protocols that resulted in in vitro development of a portion of parthenogenetically activated and cloned embryos to the 16-cell and morula stages. This study was supported by grants from the Biogreen 21-1000520030100000.


2019 ◽  
Vol 86 (9) ◽  
pp. 1149-1167 ◽  
Author(s):  
Tanushri Jerath Sood ◽  
Swati Viviyan Lagah ◽  
Manishi Mukesh ◽  
Suresh Kumar Singla ◽  
Manmohan Singh Chauhan ◽  
...  

2015 ◽  
Vol 27 (3) ◽  
pp. 544 ◽  
Author(s):  
H. S. Pedersen ◽  
Y. Liu ◽  
R. Li ◽  
S. Purup ◽  
P. Løvendahl ◽  
...  

Pig oocytes have been used increasingly for in vitro production techniques in recent years. The slaughterhouse-derived oocytes that are often used are mostly of prepubertal origin. The aims of the present study were to compare the developmental competence between pre- and postpubertal pig oocytes, and to develop a simple and practical method for the selection of prepubertal pig oocytes for parthenogenetic activation (PA) and somatic cell nuclear transfer (SCNT) based on oocyte morphology after IVM and oocyte inside zona pellucida (ZP) diameter (‘small’ ≤110 µm; ‘medium’ >110 µm; ‘large’ ≥120 µm). Meiotic competence and blastocyst rates after PA and SCNT of prepubertal oocytes increased with oocyte size, with the large prepubertal oocytes reaching a level similar to postpubertal oocytes after SCNT. Blastocyst cell number was not related to oocyte inside ZP diameter and oocyte donor to the same extent as blastocyst rate. Very low blastocyst rates were obtained after PA of morphologically bad pre- and postpubertal oocytes. In conclusion, measurement of inside ZP diameter combined with morphological selection is useful to remove incompetent oocytes. Further studies are needed to clarify the relative importance of cytoplasmic volume and stage in oocyte growth phase.


2007 ◽  
Vol 19 (7) ◽  
pp. 797 ◽  
Author(s):  
Melanie A. Bagg ◽  
Mark B. Nottle ◽  
David T. Armstrong ◽  
Christopher G. Grupen

The present study compared the distribution and steroid composition of 3-, 4- and 5–8-mm follicles on the surface of prepubertal and adult ovaries, and determined the relationship between follicle size and developmental competence of oocytes following parthenogenetic activation. The effect of 1 mm dibutyryl cAMP (dbcAMP) for the first 22 h of in vitro maturation (IVM) on the embryo development of prepubertal oocytes from the three follicle size cohorts was also determined. Compared with adult, prepubertal ovaries contained a higher proportion of 3-mm follicles (46 v. 72%, respectively), but a lower proportion of 4-mm (33 v. 22%, respectively) and 5–8-mm follicles (21 v. 6%, respectively). Adult follicular fluid (FF) contained 11-fold higher levels of progesterone (P4) than prepubertal FF, with similar levels observed between all adult follicle sizes. In prepubertal FF, the P4 concentration increased with follicle size from 3 to 4 to 5–8 mm. Rates of blastocyst development following parthenogenetic activation of adult oocytes from all three follicles sizes were similar (approximately 55%), whereas rates from prepubertal oocytes increased with increasing follicle size from 3 (17%) to 4 (36%) to 5–8 mm (55%). Treatment with dbcAMP for the first 22 h of IVM led to a 1.5-fold increase in the rate of blastocyst development for prepubertal oocytes from 3-mm follicles, but had no effect on prepubertal oocytes from the 4 and 5–8 mm classes. Mean blastocyst cell number increased with follicle size in prepubertal ovaries and was similar for all follicle sizes in adult ovaries. The present study demonstrates that the low efficiency of in vitro embryo production observed using prepubertal compared with adult pig oocytes is due to a greater proportion of 3-mm follicles on prepubertal ovaries, which contain oocytes of inferior developmental competence.


PLoS ONE ◽  
2014 ◽  
Vol 9 (9) ◽  
pp. e108139 ◽  
Author(s):  
Maria Jesús Cánepa ◽  
Nicolás Matías Ortega ◽  
Melisa Carolina Monteleone ◽  
Nicolas Mucci ◽  
German Gustavo Kaiser ◽  
...  

2003 ◽  
Vol 15 (3) ◽  
pp. 179 ◽  
Author(s):  
Goo Jang ◽  
Byeong Chun Lee ◽  
Sung Keun Kang ◽  
Woo Suk Hwang

The purpose of this study was to evaluate the effect of glycosaminoglycans (GAGs) added to the culture medium on the developmental competence of bovine embryos derived from in vitro fertilization (IVF) and from somatic cell nuclear transfer (SCNT). In vitro-matured oocytes were either inseminated with 1 × 106 spermatozoa mL−1 or enucleated and reconstructed with bovine adult ear fibroblasts by SCNT. The embryos were then cultured in modified synthetic oviduct fluid (mSOF) containing 8 mg mL−1 bovine serum albumin (BSA) (control mSOF) or control mSOF supplemented with various GAGs (hyaluronic acid, heparin or chondroitin sulfate) in a dose-dependent manner (0.1, 0.5 or 1.0 mg mL−1). Developmental competence was evaluated by monitoring the numbers of 2-cell embryos, 8–16-cell embryos and blastocysts. The mean cell number of flattened blastocysts stained with 5 μ M bisbenzimide on Day 8 was counted. The percentage of blastocyst formation (IVF and SCNT embryos) from cleaved embryos was significantly higher (P < 0.05) in control mSOF supplemented with 0.5 mg mL−1 hyaluronic acid (45% and 47%), heparin (40% and 47%) or chondroitin sulfate (38% and 44%) compared with control mSOF (30–31% and 30–33%). When compared with the efficacy of 0.5 mg mL−1 GAGs, no significant differences were observed in the developmental competence of both IVF and SCNT embryos. Supplementing control mSOF with 0.5 mg mL−1 GAGs had no effect on the cell number of IVF embryos. In contrast, supplementing 0.5 mg mL−1 of hyaluronic acid, heparin or chondroitin sulfate to control mSOF significantly (P < 0.05) increased the numbers of total cells (93–98 v. 88 cells) and trophectoderm (TE) cells (64–66 v. 55 cells), and decreased the inner cell mass (ICM) to TE cell ratio (48.2–49.8 v. 61.3) in SCNT blastocysts compared with embryos in control mSOF. In conclusion, supplementation of culture media with GAGs may improve the development of bovine IVM–IVF and SCNT embryos to the blastocyst stage. The GAGs increased the quality of blastocysts by increasing total cell numbers in the SCNT embryos.


2004 ◽  
Vol 16 (2) ◽  
pp. 195
Author(s):  
Y.H. Choi ◽  
D.D. Varner ◽  
K. Hinrichs

Research on in vitro culture of equine embryos has been scant, due to failure of equine in vitro fertilization to be repeatably successful. We have recently obtained high fertilization rates of equine oocytes via intracytoplasmic sperm injection (ICSI) using a piezo drill (Choi et al., 2002 Reproduction 123, 455–465). Culture of presumptive zygotes in G1.2/2.2 medium resulted in 63% cleavage and an average of 15 cells at 4d, but only 2 to 9% blastocyst development at 7 days (Choi et al., 2003 Theriogenology 59, 1219–1229). In the present study, we evaluated the effect of two different culture media, G1.3/G2.3 v. DMEM/F-12, with or without FBS, on blastocyst development after ICSI. Oocytes were collected from slaughterhouse-derived ovaries by follicular scraping and were matured in vitro for 24h in M199 with 10% FBS and 5μUmL−1 FSH. After culture, oocytes having a polar body (198/305; 65%) were fertilized by ICSI with frozen-thawed equine sperm using a piezo drill. Presumptive zygotes were cultured in 1 of 4 media: G1.3/G2.3 (which includes 0.8% BSA) with or without 10% FBS, or in DMEM/F-12 with 0.5% BSA, with or without 10% FBS. Culture was performed in microdroplets at 5μL/zygote under oil at 38.2°C in an atmosphere of 5% CO2, 5% O2 and 90% N2 for 7.5 days. In G1.3/2.3 treatments, G1.3 media were completely refreshed at 48h, zygotes were transferred to G2.3 (with or without FBS as per the first stage) at 96h, and were completely refreshed with the same media at 144h. In DMEM/F-12 treatments, media were completely refreshed every other day. Three to 5 replicates were performed in each treatment, and data were analyzed by chi-square test. There were no significant differences in cleavage rates (59–64%) among treatments. The rate of development to blastocyst, per oocyte injected, in G1.3/G2.3/BSA (1/49, 2%) was significantly lower (P&lt;0.05) than that for the other three treatments: G1.3/2.3/BSA/FBS (9/49, 18%), DMEM/F-12/BSA (9/50, 18%), or DMEM/F-12/BSA/FBS (10/50, 20%). There was no significant difference in blastocyst development among the latter three treatments. These findings indicate that G1.3/2.3 media with BSA only do not adequately support growth of equine embryos. Development of up to 20% of injected oocytes to the blastocyst stage in G media supplemented with FBS, in DMEM/F-12/BSA or in DMEM/F-12/BSA/FBS represents the highest in vitro equine blastocyst rate in medium alone (i.e. without co-culture) yet reported. The success of DMEM/F-12 as an embryo culture medium may provide a relatively simple basis for equine in vitro culture programs. To determine whether this medium was able to support further developmental competence, we cultured equine embryos resulting from nuclear transfer of in vitro-matured oocytes in DMEM/F-12+10% FBS (without BSA). We transferred 4 resulting blastocysts to recipient mares by transcervical transfer; one pregnancy is ongoing at 230d gestation at the time of this writing. This work was supported by the Link Equine Research Endowment Fund, Texas A&amp;M University.


2011 ◽  
Vol 23 (1) ◽  
pp. 134
Author(s):  
I. M. Saadeldin ◽  
B. H. Kim ◽  
B. Roibas da Torre ◽  
O. J. Koo ◽  
G. Jang ◽  
...  

Nuclear transfer (NT) has been used to produce many cloned offspring using several types of cells, including embryonic cells. Even though inner cell mass cells have been used as donor karyoplast for producing cloned animals, there are few studies using trophoblast. In mice, clones were born by nuclear transfer of trophoblasts from the expanded blastocyst into enucleated oocytes as a trial to show the totipotency of both inner cell mass and trophectoderm cells isolated from blastocysts (Tsunoda and Kato 1998 J. Reprod. Fertil. 113, 181–184). However, bovine trophoblast cell (TC) lines have not been used in NT to date. The purpose of this study was to elucidate whether TC as donor cell can be reprogrammed in bovine enucleated oocyte and determine the relative abundance of interferon tau (IFNτ) expression in the resulting cloned preimplantational embryos. Hatched blastocysts produced by IVF were used to isolate TCs on mouse embryonic fibroblasts treated with mitomycin C as feeder cells. TCs and adult fibroblasts (AF, control group for NT) were microinjected to perivitelline space of in vitro mature enucleated oocytes and electrically fused. Reconstructed embryos were chemically activated and cultured in a 2-step chemically defined medium. Levels of IFNτ expression in IVF-, TC-, and AF-derived blastocysts were analyzed using reverse transcription-quantitative polymerase chain reaction (RT-qPCR). IVF produced embryos were used as reference to analyze the linear progressive expression of IFNτ through mid-, expanded, and hatching blastocysts. As a result, TCs expressing IFNτ were successfully isolated and cultured on feeder layers. It grew as cell sheets of cuboidal epithelium with high proliferation capacity as a single colony originated from a small clump of cells measured 0.5 cm within 7 days of culture. TCs were reprogrammed in the enucleated oocytes to blastocyst with similar efficiency to AF (14.5% and 15.6%, respectively; P ≤ 0.05). RT-qPCR studies showed that IFNτ expression was higher in TC-derived blastocysts than IVF- and AF-derived blastocysts. Both IVF- and TC-derived blastocysts, showed progressive increase of IFNτ expression through the advancement of blastocyst development when it was compared to AF-derived blastocysts. In conclusion, using TCs expressing IFNτ as donor cell for bovine NT could increase the developmental competence of cloned embryos as indicated by progressive linear increase in IFNτ expression. This study was supported by grants from IPET (#109023-05-1-CG000), NRF (#M10625030005-10N250300510), MKE (#2009-67-10033839, #2009-67-10033805), and BK21 program. Saadeldin I. M. is supported by Islamic Development Bank (IDB) merit scholarship, Jeddah, Saudi Arabia.


Sign in / Sign up

Export Citation Format

Share Document