200 SYNCHRONIZATION OF OOCYTE MEIOTIC MATURATION IN SUPEROVULATED MICE IMPROVES IN VITRO FERTILIZATION RATE

2012 ◽  
Vol 24 (1) ◽  
pp. 212
Author(s):  
A. M. Taiyeb Ridha ◽  
D. C. Kraemer

In vitro synchronization of oocyte nuclear and cytoplasmic maturation has been found to improve the IVF rate of ovarian oocytes in several species, including humans, in comparison with nonsynchronized in vitro-matured oocytes. Here, we tested the hypothesis that synchronization of oocyte meiotic maturation by an in vivo system in superovulated mice would increase the oocyte fertilization rate when compared to that of conventional superovulated oocytes. Recently, we observed that cilostazol (CZL), a PDE3-I, was able to inhibit mouse oocyte meiotic maturation in both in vitro and in vivo systems. Administering CZL at 7.5 mg, 4 or 7 h pre-hCG allowed retrieval of ovulated oocytes of which >95% were at MI stage, scored by Nikon stereo microscope (SMZ 1500). A conventional superovulation program was adapted in all treated and their control groups, in which mice were injected with eCG and after 48 h with hCG (7.5 IU for each hormone). On the second morning, 13 to 14 h post-hCG, mice were killed and oocytes were collected from oviducts and in vitro fertilized (control). For the treated groups, CZL was administered in a single 7.5 mg oral dose (gavage) 4 or 7 h before the hCG injection. On the second morning, CZL-treated animals were killed at the same timing as control animals and oocytes were retrieved from the oviduct and in vitro matured for 6 h (for those gavaged with CZL, 4 h pre-hCG) or 3 h (for those gavaged with CZL, 7 h pre-hCG) to MII oocytes before IVF. These groups were designated as in vivo-in vitro synchronized/matured oocytes. In other groups treated with CZL, 4 or 7 h pre-hCG, the ovulated oocytes were allowed to mature in the oviduct (full in vivo synchronization and maturation) and oocytes were retrieved and fertilized with the same fertilization timings as the in vivo-in vitro synchronized/matured oocytes. Oocytes were cultured for 1 day after IVF and examined for cleavage. Statistical differences were analyzed by cross-tabulated chi-square test. The full in vivo synchronization and maturation (for both CZL dose timings of 4 and 7 h pre-hCG) gave significantly higher early embryonic development rates compared with those of the control [89% (n = 219) and 92.2% (n = 374) vs 81.8% (n = 198); P = 0.034 and P < 0.0001, respectively]. The in vivo-in vitro synchronized/matured oocytes (CZL dose timing at 7 h, but not 4 h pre-hCG) gave significantly higher early embryonic development rates compared with those of the control [88.5% (n = 339) vs 83.4% (n = 458), respectively; P = 0.043]. However, the increase of the IVF rate of the oocytes from mice treated with CZL, 4 h pre-hCG, in the in vivo-in vitro synchronized/matured group was not significantly different from the control group [88.5% (n = 399) vs 83.4% (n = 458), respectively; P = 0.43]. It is concluded from the present study that synchronization of oocyte meiotic maturation by the in vivo and in vivo-in-vitro protocols can increase the IVF rate of oocytes in superovulated mice.

2017 ◽  
Vol 11 (1) ◽  
pp. 67-71
Author(s):  
S. Al-dujaily ◽  
Salah M. Al-Chalabi ◽  
N. Khadem ◽  
M. Abdul-mageed ◽  
Mo Abdul lateef

Female Fertility Blend ® (FFB) is one of new nutritional supplement that used to enhance the fertility status in women. This supplement containing vitamins, minerals, enzymes, amino acids, all may improve the oocytes quality and ovarian function; at the same time protect oocytes from free radicals damage. The aim of the study is to examine the in vivo effect of FFB on oocyte quality, and in vitro fertilization rate (IVFR), and embryonic development (ED) at early cleavage stages using the mice as a model for human being. Therefore, two groups of mature female mice were involved (20 mouse each). The treated group is daily orally administrated by 3.4mg/kg /body weight from FFB for 10 days and the other groups (the control) were treated with FFB- free distilled water only for the same period. Oocytes were collected and an epididymal sperms from mature fertilized male mice are obtained and in vitro fertilization (IVF) is done. Following 24 and 48hrs from IVF, the FR and ED rate are recorded. This results showed a significant (P<0.05) differences in fertilization rate and embryonic development when treating the female mice with FFB compared to control group. It is concluded that the FFB treatment has a great improvement in oocytes maturation and in vitro fertilization and embryonic development status.


Zygote ◽  
2021 ◽  
pp. 1-5
Author(s):  
Nafiye Yılmaz ◽  
Şebnem Özyer ◽  
Derya Taş ◽  
Mehmet Caner Özer ◽  
Ayten Türkkanı ◽  
...  

Summary To determine the fertilization and embryonic potential of immature metaphase I (MI) oocytes in patients with low oocyte maturity rate in whom the percentage of mature oocytes obtained was less than 75% of the total retrieved ones. In vivo matured metaphase II (MII) oocytes (MII-ICSI, n = 244), and in vitro matured MI oocytes (MI-MII-ICSI, n = 202) underwent an intracytoplasmic sperm injection (ICSI) procedure. Maturation rate, fertilization rate and early embryonic development were compared in both groups. In total, 683 oocytes were collected from 117 ICSI cycles of 117 patients. Among them, 244 (35.7%) were mature MII and 259 (37.9%) were MI after the denudation process. Of those 259 MI oocytes, 202 (77.9%) progressed to MII oocytes after an incubation period of 18–24 h. The maturation rate was 77.9%. Fertilization rate was found to be significantly higher in the rescued in vitro matured MI oocyte group when compared with the in vivo matured MII oocyte group (41.6% vs 25.8%; P = 0.0006). However, no significant difference was observed in terms of cleavage rates on days 2 and 3 between the groups (P = 0.9126 and P = 0.5031, respectively). There may be unidentified in vivo factors on the oocyte maturation causing low developmental capacity in spite of high fertilization rates in the group of patients with low oocyte maturity rate. Furthermore, studies are needed to determine the appropriate culture characteristics as well as culture period and ICSI timing of these oocytes.


2019 ◽  
Vol 119 (2) ◽  
pp. 2
Author(s):  
Caitlin Streacker ◽  
Brian D. Whitaker

The objective of this study was to determine the reduction of polyspermic penetration, and increase of mitochondrial activity, in early pig embryonic development by supplementing different concentrations of coenzyme Q10 during oocyte maturation. Oocytes (n = 1,100) were supplemented during the last 24 h of maturation with 0 (control), 10, 50, or 100 μM of coenzyme Q10. After in vitro fertilization (IVF), embryos were evaluated for fertilization kinetics (penetration, polyspermic penetration, male pronuclear formation), and subsequent embryonic development and mitochondrial activity. Supplementation of 100 μM coenzyme Q10 was detrimental to the oocytes, as they had significantly lower (p < 0.05) fertilization kinetic and early embryonic development rates to the other treatment groups. There were no differences in fertilization kinetic and early embryonic development rates between the 0, 10 and 50 μM coenzyme Q10 treatment groups. Oocytes, matured in medium supplemented with 50 μM coenzyme Q10, ultimately developed into embryos with a significantly greater (p < 0.05) presence of intact mitochondrial membranes (observed at both 48 and 144 h post-IVF) compared to oocytes not supplemented with coenzyme Q10. In summary, supplementation of 100 μM coenzyme Q10 during oocyte maturation is detrimental, yet supplementation of 50 μM coenzyme Q10 leads to a higher occurrence of intact mitochondrial membranes in the in vitro produced pig embryos.


2012 ◽  
Vol 24 (1) ◽  
pp. 179 ◽  
Author(s):  
A. Gad ◽  
U. Besenfelder ◽  
V. Havlicek ◽  
M. Hölker ◽  
M. U. Cinar ◽  
...  

An understanding of gene expression patterns due to altered environmental conditions during different time points of the pre-implantation period would improve our knowledge on regulation of embryonic development and improve success of embryo culture. The aim of this study was to examine the effect of alternative in vivo and in vitro culture conditions at specific phases of early embryonic development on transcriptome profile of bovine blastocysts. Using nonsurgical endoscopic oviducal transfer technology, 5 different blastocyst groups were produced. The first 2 groups were matured in vitro and then either transferred after maturation or after in vitro fertilization to synchronized recipients. The other 3 groups were matured, fertilized and cultured in vitro until 4-cell, 16-cell and morula stage before transfer. Blastocysts from each group were collected by uterine flushing at Day 7 and pooled in groups of 10. Complete in vitro (IVP) and in vivo blastocysts were produced and used as controls. A unique custom microarray (Agilent) containing 42 242 oligo probes (60-mers) was used over 6 replicates of each group vs the in vivo control group to examine the transcriptome profile of blastocysts. Compared with the in vivo control group, clear dramatic shifts were found in the number of differentially expressed genes (DEG, fold change ≥2) at 2 different time points. The first shift occurred for blastocyst groups that were transferred after in vitro fertilization and before embryonic genome activation (EGA). The second shift occurred for blastocyst groups that were transferred after EGA, as well as for the IVP group. Ontological classification of DEG showed that the more time spent under in vitro conditions, the higher the percentage of DEG involved in cell death and apoptotic processes. Moreover, lipid metabolism was the most significant process affected in the blastocysts transferred after in vitro maturation and blastocysts transferred at 16-cell stage. Most DEG involved in this process were down-regulated. Pathway analysis revealed that signalling pathways were the dominant pathways in all groups except the group that was transferred after in vitro maturation. That group showed significant down-regulation for genes involved in retinoic acid receptors activation pathways. These results showed that fertilization and EGA were the most critical developmental stages influenced by in vitro culture conditions and subsequently affect blastocyst quality, as measured in terms of gene expression patterns. Moreover, we identified molecular mechanisms and pathways that were influenced by altered culture conditions. These findings will enable the examination of strategies for modifying in vitro culture conditions at critical stages that will allow more efficient production of developmentally competent blastocysts.


Author(s):  
Maria Cristina Budani ◽  
Gian Mario Tiboni

Nitric oxide (NO) is formed during the oxidation of L-arginine to L-citrulline by the action of multiple isoenzymes of NO synthase (NOS): neuronal NOS (nNOS), endotelial NOS (eNOS), and inducible NOS (iNOS). NO plays a relevant role in the vascular endothelium, in central and peripheral neurons, and in immunity and inflammatory systems. In addition, several authors showed a consistent contribution of NO to different aspects of the reproductive physiology. The aim of the present review is to analyse the published data on the role of NO within the ovary. It has been demonstrated that the multiple isoenzymes of NOS are expressed and localized in the ovary of different species. More to the point, a consistent role was ascribed to NO in the processes of steroidogenesis, folliculogenesis, and oocyte meiotic maturation in in vitro and in vivo studies using animal models. Unfortunately, there are few nitric oxide data for humans; there are preliminary data on the implication of nitric oxide for oocyte/embryo quality and in-vitro fertilization/embryo transfer (IVF/ET) parameters. NO plays a remarkable role in the ovary, but more investigation is needed, in particular in the context of human ovarian physiology.


2020 ◽  
Vol 76 (03) ◽  
pp. 6356-2020 ◽  
Author(s):  
KATARZYNA PONIEDZIAŁEK-KEMPNY ◽  
BARBARA GAJDA ◽  
IWONA RAJSKA ◽  
LECHOSŁAW GAJDA ◽  
ZDZISŁAW SMORĄG

The aim of the study was to examine the in vivo viability of in vitro-produced (IVP) porcine embryos obtained from oocytes matured with thymosin. The research material for this study consisted of immature pig oocytes obtained from ovaries after slaughter and ejaculated semen obtained from one boar. The immature oocytes were cultured in vitro until the metaphase II stage in a medium supplemented with thymosin (TMS). The presumptive zygotes obtained were cultured in vitro for 4-40 hours. The presumptive zygotes and 2-4-cell embryos were evaluated in vivo after transferring them to synchronized recipients. After the transfer of embryos from the experimental group into 2 recipients (50 embryos into each gilt) and the transfer of 50 embryos from the control group into 1 recipient, both gilts that had received embryos obtained by in vitro fertilization of oocytes matured with TMS became pregnant and delivered a total of 16 live piglets. After the transfer of embryos from the control group, no pregnancy was achieved. In conclusion, the results of our preliminary study suggest that the maturation of pig oocytes with thymosin supports the in vivo survival of in vitro produced embryos. It is important to note, that this was the first birth of piglets obtained after transfer of IVP embryos in Poland.


1994 ◽  
Vol 9 (10) ◽  
pp. 1903-1908 ◽  
Author(s):  
Herman Tournaye ◽  
Marleen Van der Linden ◽  
Etienne Van den Abbeel ◽  
Paul Devroey ◽  
André Van Steirteghem

2007 ◽  
Vol 19 (1) ◽  
pp. 209
Author(s):  
S.-W. Kim ◽  
M.-J. Lee ◽  
B.-C. Yang ◽  
G.-S. Im ◽  
H.-H. Seong ◽  
...  

The application of matrix proteins to culture systems for growth of embryos is a logical extension in the quest to better simulate the in vivo culture environment. Matrigel, a commercially available extracellular matrix product containing collagen IV, laminin, entactin, and proteoglycans isolated from mouse tumor cells, has been tested. Development of mouse pre-implantation embryos cultivated in conventional culture medium was contrasted to that of embryos grown in solubilized Matrigel medium. In the solubilized Matrigel medium, in vitro blastocyst formation and hatching were significantly enhanced over that observed in the medium alone control. Therefore, the aim of this study was to investigate the effect of solubilized Matrigel on the development of porcine embryos after in vitro fertilization. In vitro-matured oocytes were fertilized in mTBM medium with fresh spermatozoa for 6 h. Putative zygotes were cultured in PZM-3 medium supplemented with (matrigel group) or without (control group) 0.8% Matrigel for 6 days. The number of cells in blastocysts was determined by staining with Hoechst 33342. Assessment of apoptosis in blastocysts was examined by TUNEL. The statistical significance of the data was analyzed using chi-square test and Student&apos;s t-test. The addition of Matrigel appeared not to increase the proportion of blastocysts (control: 71/219, 21.8 � 2.2% vs. Matrigel: 69/220, 23.5 � 5.8%). However, the mean cell numbers were significantly increased by Matrigel (Matrigel: n = 31, 52.9 � 18.1 vs. control: n = 30, 42.3 � 14.4; P &lt; 0.01). The proportion of apoptotic cells was significantly lower in the Matrigel group (Matrigel: 4.5 � 4.2% vs. control: 6.6 � 5.5%; P &lt; 0.05). In this experiment, Matrigel appeared to increase blastocyst quality of porcine embryos. Results suggest that Matrigel, as an extracellular matrix component, may be another avenue for formulating more physiological culture systems.


Sign in / Sign up

Export Citation Format

Share Document