26 PRODUCTION OF CLONED KOREAN RACCOON (NYCTEREUTES PROCYONOIDES KOREENSIS) EMBRYOS BY INTERSPECIES SOMATIC CELL NUCLEAR TRANSFER USING ENUCLEATED PIG OOCYTES

2012 ◽  
Vol 24 (1) ◽  
pp. 125
Author(s):  
S.-A. Cheong ◽  
Y. Jeon ◽  
S.-S. Kwak ◽  
R. Salehi ◽  
Y.-H. Nam ◽  
...  

Interspecies somatic cell nuclear transfer (iSCNT) could be a useful method for embryo research of wildlife animals or endangered species. Because it is hard to obtain the oocytes or embryos of wildlife animals, its embryo research is not progressing well. Therefore, iSCNT is one of the alternative ways for wildlife animal embryo research and conservation of their genetic source. Until now, iSCNT has been applied to conservation of wildlife animals including guar, mouflon, banteng and African wildcat. The domestic pig oocytes have been used for iSCNT of other species such as tiger, sheep and dog and they successfully developed to the blastocyst stage. According to this concept, we performed wild-captured Korean raccoon (Nyctereutes procyonoides koreensis) iSCNT using porcine oocytes matured in vitro. Raccoon fibroblasts from ear skin samples of male raccoon were used as donor cells in 3 to 5 passages. The donor cells were cultured in DMEM supplemented with 15% FBS. Enucleated porcine oocytes were fused with raccoon fibroblasts by electrofusion. The iSCNT embryos were cultured in PZM-3 at 39°C for 7 days in an atmosphere of 5% CO2 and 5% O2. A total of 158 iSCNT embryos were cultured. More than 77% of the raccoon somatic cells successfully fused with the porcine oocytes; 68.5% of the iSCNT raccoon embryos developed to the 2- to 8-cell stage at Day 2 (1-cell: 9.7%, 2-cell: 14.4%, 4-cell: 34.1%, 6-cell: 12.7%, 8-cell: 7.3%, fragmented: 21.8%). This is similar to porcine SCNT results that 62.5% of the SCNT porcine embryos developed (1-cell: 8.0%, 2-cell: 4.2%, 4-cell: 23.6%, 6-cell: 13.6%, 8-cell: 23.8%, fragmented: 26.8%). But no embryos were further developed to blastocyst stage at Day 7 in iSCNT. In fragmentation evaluation in iSCNT embryos using by Hoechst stain at Day 2, two-cell stage embryos and four-cell stage embryos showed the normal numbers of nucleus. However, 6-cell stage embryos showed 4 to 5 nuclei and 8-cell stage embryos also showed 5 to 6 nuclei. Almost iSCNT embryos showed the developmental block at 4-cell stage embryos. This result was probably caused by an incomplete reprogrammed raccoon cell after iSCNT. Therefore, we treated with trichostatin A (TSA), a histone deacetylase inhibitor that has been used to enhance nuclear reprogramming following SCNT. Ninety-seven iSCNT raccoon-pig embryos were treated with 5 nM TSA during 15 h before being cultured in PZM-3. The TSA-treated iSCNT embryos showed similar developmental status to non-treated embryos (1-cell: 13.5%, 2-cell: 12.5%, 4-cell: 35.0%, 6-cell: 10.1%, 8-cell: 6.3%, fragmented: 22.5%). No embryos were further developed to blastocyst stage at day 7. Our results showed that 4-cell stage embryos of raccoon-porcine iSCNT embryos may be produced by iSCNT methods, but they were unable to support complete reprogramming of raccoon-porcine iSCNT embryos. This work was supported by a grant from the Next-Generation BioGreen 21 Program (No. 007133022011), Rural Development Administration, Republic of Korea.

2011 ◽  
Vol 23 (1) ◽  
pp. 126
Author(s):  
Y. Kaedei ◽  
A. Fujiwara ◽  
F. Tanihara ◽  
Z. Namula ◽  
V. L. Vien ◽  
...  

Interspecies somatic cell nuclear transfer (iSCNT) is an invaluable tool for studying nucleous-cytoplasm interactions, and may provide an alternative for cloning endangered animals, whose oocytes are difficult to obtain. Using readily available oocytes from domestic/farm animals as recipients for iSCNT would greatly benefit ongoing research on somatic cell reprogramming. However, little information is available concerning the development of canine iSCNT embryos reconstructed with bovine oocyte cytoplasm. In the first experiment, we investigated the influence of donor cell type on the development of canine iSCNT embryos reconstructed with enucleated bovine oocytes. Canine mammary gland tumour (MGT) cells and cumulus cells were used as donor cell. The bovine oocytes matured for 22 h were enucleated by the micromanipulator, and the donor cells were transferred into the perivitelline space adjacent to the plasma membrane of the oocyte. The couples were fused and activated simultaneously with a single DC pulse of 2.3 kV cm–1 for 30 μs, using an electro cell fusion generator. The reconstructed embryos were cultured for 72 h in the mSOF medium supplemented with 0.4% BSA. After 72 h of culture, only cleaved embryos were further co-cultured with bovine cumulus cells in mSOF supplemented with 5% fetal bovine serum (FBS) for an additional 5 days. In the second experiment, we examined the effects of serum type on the development of canine iSCNT embryos. The embryos reconstructed with canine cumulus cells were co-cultured with canine cumulus cells in mSOF supplemented with 5% FBS, and canine oestrous and diestrous serum for 5 days after 72 h of culture with 0.4% BSA. Data were analysed by chi-square analysis with a Yates’ correction. More than 75% of the canine somatic cells successfully were fused with bovine enucleated oocytes following electrofusion, irrespective of the types of the donor cells. There were no significant differences in the cleavage rates of iSCNT embryos between the cumulus cell and MGT cell (66.2% v. 62.6%). Although none of the embryos reconstructed with MGT cells (n = 123) developed to the 16-cell stage, 6% of embryos with cumulus cells (n = 133) reached at least the 16-cell stage. There were no significant differences in the cleavage rates of iSCNT embryos among the types of serum. The iSCNT embryos could not develop to the blastocyst stage, irrespective of the type of donor cell and serum. In conclusion, our results indicate that the bovine oocytes partly supported the remodelling and reprogramming of the canine somatic cell nuclei, but they were unable to support the development to the blastocyst stage of canine iSCNT embryos. Moreover, the development to the late embryonic stage of iSCNT embryos may be influenced by the type of donor cell but not serum.


2007 ◽  
Vol 19 (1) ◽  
pp. 142 ◽  
Author(s):  
D. Iwamoto ◽  
K. Saeki ◽  
S. Kishigami ◽  
A. Kasamatsu ◽  
A. Tatemizo ◽  
...  

Although cloning by somatic cell nuclear transfer (SCNT) has been achieved in various mammalian species, its efficiency has been very low (Han et al. 2003 Theriogenology 59, 33–44). Successful cloning requires conversion from differentiated donor nuclei to embryonic nuclei after transfer of the somatic nuclei into enucleated oocytes. Reprogramming of the transferred somatic nuclei must be completed by the time when normal activation of the embryonic genome occurs (Solter 2000 Nat. Rev. Genet. 1, 199–207). Recently, both full-term development and pre-implantation development of mouse SCNT embryos were significantly enhanced by treatment with trichostatin A (TSA), an inhibitor of histone deacetylase (Kishigami et al. 2006 Biochem. Biophys. Res. Commun. 340, 183–189; Rybouchkin et al. 2006 Biol. Reprod. 74, 1083–1089). The objective of this study was to investigate the effects of TSA on the development of bovine SCNT embryos. Bovine fibroblasts were cultured under serum starvation (0.4% FCS) for 7 days and then used as donor cells. The cells were electro-fused with bovine enucleated matured oocytes, and activated with a calcium ionophore and cycloheximide. They were subsequently cultured in mSOF medium until 168 h post-activation (hpa). The NT embryos were exposed to 0 (control), 5, 50, and 500 nM TSA from the start of activation to 48 hpa. Experiments were repeated 3 times, and the data were analyzed with Fisher's PLSD test following ANOVA. The cleavage rates were the same among the groups (60 to 80%; P >0.05). However, the blastocyst rate of NT embryos treated with 50 nM TSA was higher than that of control embryos (40% vs. 19%, respectively; P < 0.05). On the other hand, the blastocyst rate was lower with 500 nM TSA than with 5 or 50 nM TSA (7% vs. 33% or 40%; P < 0.05). These data suggest that proper TSA treatment after somatic cloning improves the rate of development of bovine cloned embryos to the blastocyst stage. Further research is needed to examine whether NT embryos derived from different cell lines or types have similar susceptibility to TSA.


2019 ◽  
Vol 31 (1) ◽  
pp. 148
Author(s):  
Y. H. Zhai ◽  
X. L. An ◽  
Z. R. Zhang ◽  
S. Zhang ◽  
Z. Y. Li

During fertilization, the parental genome undergoes extensive demethylation. Global DNA demethylation is a hallmark of epigenetic reprogramming. Embryos engage non-canonical DNA methylation maintenance mechanisms to ensure inheritance of exceptional germline features. However, the mechanisms ensuring demethylation resistance in light of global reprogramming remain poorly understood. TRIM28 is a maternal-effect factor that controls genomic imprinting during early embryonic reprogramming. In this study, cytoplasmic injections of siRNA were performed into oocytes matured in vitro for 26h to interfere with the expression of TRIM28 in oocytes. The injected oocytes were continually matured in vitro until 42h and used to construct somatic cell nuclear transfer (SCNT) embryos. During 2-cell to blastocyst stages, the expression of development-related genes (NANOG, POU5F1, CDX2, BAX, and BCL2), maternal imprinting genes (IGF2, DIO3, PLAGL1, and DLK1), paternal imprinting genes (H19 and PEG3), TRIM28-recruitment complex-associated genes (ZFP57, PGC7, SETDB1, and DNMT), and epigenetic chromatin modification enzymes were detected by quantitative PCR in the constructed TRIM28-interfered SCNT embryos. The DNA methylation levels in the promoter regions of the imprinted genes (H19 and IGF2) and chromatin repeats (PRE-1 and SATELLITE) were analysed by sodium bisulfite genomic sequencing. The results showed that the TRIM28-interfered SCNT embryos had significantly lower cleavage and blastocyst rates (53.9±3.4% and 12.1±4.3%, respectively) than those in control SCNT embryos (64.8±2.7% and 18.8±1.9%, respectively). The expression levels of development-related genes (NANOG and POU5F1) and TRIM28-recruited transcriptional repression complex-associated genes (PGC7, ZFP57, and DNMT1) in the 4-cell stage were significantly reduced (P<0.05). The imprinted genes were significantly up-regulated (P<0.05) from the 2-cell to blastocyst stage in constructed TRIM28-interfered SCNT embryos, except H19 at the 2-cell and blastocyst stage decreased remarkably (P<0.05). The DNA methylation levels of IGF2 decreased 2-fold from the 2-cell to blastocyst stage in TRIM28-interfered SCNT embryos. The PRE-1 and SATELLITE had a remarkably lower (P<0.05) methylation levels in the TRIM28-interfered 2-cell embryos than in control SCNT embryos. The cluster analysis showed some of the chromatin modification enzymes had abnormal expression in the TRIM28-interfered SCNT embryos, especially in the 8-cell stage, where 48 enzymes were significantly decreased (P<0.05). The down-regulation enzymes were mainly clustered in the histone H3K4 methyl transferase and histone acetylase. These results indicate that down-regulation of maternal TRIM28 breaks the steady-state of genomic methylation at a particular locus of the imprinted gene, disrupts the expression of imprinted gene and epigenetic modifications enzymes, and is detrimental to normal development of SCNT embryos. Maternal TRIM28 is needed in maintaining a stable state of genomic methylation and epigenetic modification state during SCNT embryo development.


2016 ◽  
Vol 28 (2) ◽  
pp. 132 ◽  
Author(s):  
K. Srirattana ◽  
J. C. St. John

Although somatic cell nuclear transfer (SCNT) is a valuable tool for producing animals for agricultural and research purposes, the resultant mixing of mitochondrial DNA (mtDNA) from the donor cell and recipient oocyte (heteroplasmy) affects embryo development and offspring survival and health. The aim of this study was to determine the effects of depleting donor cells of their mtDNA before SCNT on embryo development. mtDNA was depleted from cattle fibroblasts using 2′,3′-dideoxycytidine. mtDNA copy number in cells depleted for 30 days (0.85 ± 0.05) was significantly decreased when compared with nondepleted cells (150.12 ± 29.90; P < 0.0001, ANOVA). Moreover, mtDNA copy number in depleted cells could not be replenished after depletion for 30 days. Depleted cells and nondepleted cells were used as donor cells for SCNT. Somatic cell nuclear transfer embryos were produced by electrofusion of a single donor cell with an enucleated cow oocyte. Reconstructed oocytes were chemically activated and cultured for 7 days (nontreated embryos). Another cohort of embryos was treated with Trichostatin A (TSA), to enhance reprogramming, by activating reconstructed oocytes and culturing them in the presence of 50 nM TSA for up to 10 h. The embryos were then cultured in the absence of TSA. In nontreated groups, the fusion rates of depleted cells (78.0 ± 0.8%) were significantly lower than those of nondepleted cells (92.1 ± 1.4%; P < 0.05). No positive effect on fusion rates was found after TSA treatment. The blastocyst rate for SCNT embryos derived from depleted cells (18.7 ± 4.9%) was significantly lower than the nondepleted group (32.5 ± 3.1%; P < 0.05). Trichostatin A treatment increased blastocyst rates for SCNT embryos derived from depleted cells (32.5 ± 5.3%) to levels equivalent to those of nondepleted cells but did not have any beneficial effect on SCNT embryos derived from nondepleted cells. We have analysed blastocysts for the presence of donor cell mtDNA by high resolution melting analysis. Four out of 10 SCNT blastocysts derived from nondepleted cells were heteroplasmic, whereas others had no donor cell mtDNA. However, all 10 analysed SCNT blastocysts derived from depleted cells were homoplasmic as they harboured only oocyte mtDNA. From RNA sequencing results, TSA treatment of SCNT blastocysts derived from depleted cells increased the expression of key developmental transcription regulators and decreased expression of the mtDNA-specific replication factors, which is essential for embryo development. In conclusion, homoplasmic SCNT embryos were successfully produced by using mtDNA depleted donor cells. Trichostatin A treatment enhanced nuclear reprogramming efficiency in SCNT embryos derived from depleted cells. This work was supported by MitoStock Pty. Ltd., Australia.


Zygote ◽  
2014 ◽  
Vol 23 (4) ◽  
pp. 494-500 ◽  
Author(s):  
Hironobu Sugimoto ◽  
Yuta Kida ◽  
Noriyoshi Oh ◽  
Kensaku Kitada ◽  
Kazuya Matsumoto ◽  
...  

SummaryWe examined growing oocytes collected from follicles remaining in superovulated rabbit ovaries, that were grown (in vitro growth, IVG) and matured (in vitro maturation, IVM) in vitro. We produced somatic cell nuclear transfer (SCNT) embryos using the mature oocytes and examined whether these embryos have the ability to develop to the blastocyst stage. In addition, we examined the effects of trichostatin A (TSA), a histone deacetylase inhibitor (HDACi), on the developmental competence of SCNT embryos derived from IVG–IVM oocytes. After growth for 7 days and maturation for 14–16 h in vitro, the growing oocytes reached the metaphase II stage (51.4%). After SCNT, these reconstructed embryos reached the blastocyst stage (20%). Furthermore, the rate of development to the blastocyst stage and the number of cells in the blastocysts in SCNT embryos derived from IVG–IVM oocytes were significantly higher for TSA-treated embryos compared with TSA-untreated embryos (40.6 versus 21.4% and 353.1 ± 59.1 versus 202.5 ± 54.6, P < 0.05). These results indicate that rabbit SCNT embryos using IVG–IVM oocytes have the developmental competence to reach the blastocyst stage.


2009 ◽  
Vol 21 (1) ◽  
pp. 198
Author(s):  
T. Xiang ◽  
S. Walker ◽  
K. Gregg ◽  
W. Zhou ◽  
V. Farrar ◽  
...  

Oct-4, a POU domain-containing transcription factor encoded by Pou5f1, is selectively expressed in pre-implantation embryos and pluripotent stem cells, but not in somatic cells. Because of such a unique expression feature, Oct-4 can serve as a useful reprogramming indicator in somatic cell nuclear transfer (SCNT). Compared with data of Oct-4 expression in mouse and bovine cloned embryos, little is known about this gene in equine nuclear transfer. In the present study, we investigated Oct-4 expression in donor cells, oocytes, and SCNT embryos to evaluate reprogramming of equine somatic cells following nuclear transfer. Horse ovaries were obtained from a local slaughterhouse and the oocytes collected from the ovaries were matured in vitro in an M199-based medium (Galli et al. 2003 Nature 424, 635) for 24 h. Donor cells were derived from biopsy tissue samples of adult horses and cultured for 1 to 5 passages. Standard nuclear transfer procedures (Zhou et al. 2008 Mol. Reprod. Dev. 75, 744–758) were performed to produce cloned embryos derived from equine adult somatic cells. Cloned blastocysts were obtained after 7 days of in vitro culture of reconstructed embryos. Total RNA were extracted using Absolutely RNA Miniprep/Nanoprep kits (Stratagen, La Jolla, CA) from oocytes (n = 200), donor cells, and embryos (n = 5). DNase I treatment was included in the procedure to prevent DNA contamination. Semiquantitative RT-PCR was performed with optimized cycling parameters to analyze Oct-4, GDF9, and β-actin in equine donor cells, oocytes, and cloned blastocysts. The RT-PCR products were sequenced to verify identity of the genes tested. The relative expression abundance was calculated by normalizing the band intensity of Oct-4 to that of β-actin in each analysis. No transcript of Oct-4 was detected in equine somatic cells used as donor nuclei, consistent with its expression patterns in other animal species, whereas Oct-4 was abundantly expressed in equine SCNT blastocysts derived from the same donor cell line. Oct-4 transcripts were also detected in equine oocytes and whether any maternally inherited Oct-4 mRNA persisted up to the blastocyst stage was unclear in this study. We selected GDF9 to address this question; GDF9 was abundantly detected in equine oocytes, consistent with its expression pattern in mouse and bovine, but not detected in donor cells and cloned blastocysts, suggesting that the GDF9 mRNA from the oocyte was degraded at least by the blastocyst stage. The results from this study imply occurrence of Oct-4 reprogramming in equine SCNT blastocysts, and future analysis for more developmentally important genes is needed to better understand reprogramming at molecular levels in this species.


2010 ◽  
Vol 22 (1) ◽  
pp. 251
Author(s):  
J.-G. Yoo ◽  
M.-R. Park ◽  
H.-N. Kim ◽  
Y.-G. Ko ◽  
J.-Y. Lee ◽  
...  

Instead of surgical embryo transfer (ET) in the pig, nonsurgical ET is a hopeful method to increase the efficiency of biotechnology applications such as cloning and transgenesis. In this study, we conducted surgical and nonsurgical ET methods after somatic cell nuclear transfer (SCNT) with MHC miniature pig cells to find out the best condition for production of cloned miniature pigs. Ovaries were obtained from prepubertal crossbred gilts at a local slaughterhouse. Oocytes were matured for 40 to 44 h at 38.5°C under 5% CO2 in air. As donor cells, fibroblast cells were cultured from ear skin tissue of 8-month-old MHC inbred miniature pigs. Fibroblast cells were cultured, passaged (3 to 8 passages), and used as donor cells for NT. After the enucleation and injection process, eggs were held in TCM-199. For fusion, 2 DC pulses of 1.2 kV cm-1 were applied for 30 μs. Both IVF and SCNT embryos were cultured in PZM-3 medium. After IVF, 84.9% (411/484) of embryos cleaved and 27.3% (132/484) of embryos reached the blastocyst stage. In the SCNT group, 80.8% (231/286) of eggs fused and 25.9% (60/286) of embryos developed to blastocysts. For surgical ET, approximately 200 SCNT embryos were transferred into oviducts of each synchronized recipient. For nonsurgical ET, embryos were cultured in PZM-3 for 6 days after SCNT and IVF, and then good quality blastocyst stage embryos were selected for ET. The pregnancy status of recipients at Day 30 was determined by ultrasound scanning. Using Day 30 of gestation as an endpoint, the nonsurgical ET method (47.3%, 9/19) had a similar pregnancy rate as the surgical ET method (56.5%, 13/23). Further study is needed to optimize the nonsurgical ET method especially for SCNT eggs. This work received grant support from the Agenda Program (no. 200901FHT010305535), Rural Development Administration, Republic of Korea.


2012 ◽  
Vol 11 (11) ◽  
pp. 1812-1818 ◽  
Author(s):  
He-Ping Li ◽  
Ya-Xin Yao ◽  
Wei-Jun Guan ◽  
Xiang-Chen Li ◽  
Xiao-Hua Su ◽  
...  

2013 ◽  
Vol 25 (1) ◽  
pp. 169
Author(s):  
Y. H. Nam ◽  
Y. Jeon ◽  
S. A. Cheong ◽  
S. S. Kwak ◽  
S. H. Hyun

Recently, great focus has been on the rescue of endangered animals through somatic cell nuclear transfer (SCNT). Because it is difficult to obtain the oocytes of endangered species, interspecies SCNT (iSCNT) methods have been attempted. Numerous iSCNT embryos have shown unsuccessful development due to aberrations in expression of housekeeping genes and genes dependent on the major embryonic genome activation (EGA). In particular, aberrant EGA may cause the arrest of nucleoli formation and developmental block in embryos. According to this concept, we performed raccoon iSCNT using porcine oocytes and analyzed iSCNT embryo development pattern and formation of nucleoli. Enucleated porcine oocytes were fused with raccoon fibroblasts by electrofusion. Cleavage and blastocyst formation were evaluated under a stereomicroscope at 48 and 168 h post-activation (hpa), respectively. To confirm the formation of nucleoli, which can be detected by C23 antibody labeling in many mammalian species, C23 immunocytochemistry was performed at 48 and 72 hpa. A total of 158 iSCNT embryos were cultured; 68.5% of the raccoon iSCNT embryos were cleaved at 48 hpa (1-cell stage: 9.7%; 2-cell stage: 14.4%; 4-cell stage: 34.1%; 6-cell stage: 12.7%; 8-cell stage: 7.3%; fragmented: 21.8%). But, the embryos seen as 5- to 8-cell stage did not have the same number of nuclei as their blastomere number. When raccoon iSCNT embryos were stained by Hoechst 33342, 5- to 8-blastomere raccoon iSCNT embryos had only 4 nuclei. The raccoon iSCNT embryos did not develop past the 4-cell stage and failed to form blastocysts. In the control group, 65.2% of pig SCNT embryos were cleaved at 48 hpa (1-cell stage: 8.0%; 2-cell stage: 4.2%; 4-cell stage: 23.6%; 6-cell stage: 13.6%; 8-cell stage: 23.8%; fragmented: 26.8%), and 10.0% of pig SCNT embryos developed to blastocysts. In raccoon iSCNT embryos, raccoon nuclei failed to form nucleoli at 48 and 72 hpa. By contrast, pig SCNT embryos showed 18.8 and 87.9% nucleoli formation at 48 and 72 hpa. Our results demonstrate that 4-cell-stage embryos of raccoon-porcine hybrid embryos may be produced by SCNT methods. The pig oocytes partly supported the remodeling and reprogramming of the raccoon somatic cell nuclei, but they were unable to support nucleoli formation. Moreover, aberrant nucleoli formation caused the unsuccessful development of raccoon SCNT embryos to the blastocyst stage. This work was supported by a grant from the Next Generation BioGreen 21 program (no. PJ008121012011), Rural Development Administration, Republic of Korea.


2021 ◽  
Vol 33 (2) ◽  
pp. 115
Author(s):  
V. Alberio ◽  
V. Savy ◽  
G. Vans Landschoot ◽  
L. N. Moro ◽  
F. D. Olea ◽  
...  

Somatic cell nuclear transfer (SCNT) is a powerful tool, but its efficiency remains low. The use of less differentiated donor cells or the embryo aggregation (EA) strategy improves the SCNT rates in several species. It remains unexplored whether the combined use of both strategies results in a synergistic effect that improves SCNT efficiency in bovine. To evaluate that, we assessed the optimal time of EA using IVF embryos (aim 1) and we evaluated whether the use of adipose-derived mesenchymal stem cells (ASC) as donor for SCNT together with EA improves the blastocyst rates and quality (aim 2). For aim 1, cumulus–oocyte complexes (COCs) were collected from slaughterhouse ovaries, invitro matured (TCM-199), fertilized (16×106 spermatozoa mL−1 for 5h) and cultured (synthetic oviductal fluid media in a humidified gas mixture at 39°C). After IVF, the zona pellucida was enzymatically removed and zona-free (ZF) embryos were cultured individually (1X) or 2 embryos placed together within a microwell (2X) (Day 0, n=70). This procedure was performed at Days 3, 4, 5, 6, or 7 (n=76, 78, 94, 96, 90, respectively) and blastocyst rate was assessed at Day 8. Contribution of both embryos to the 2X blastocyst was confirmed by staining Day 0 IVF embryos either with green or red Mitotracker (ThermoFisher Scientific) before EA. For aim 2, fibroblast (FB) and ASC cells were isolated from the skin and subcutaneous adipose tissue of the same adult animal, respectively. Cloned embryos were produced by ZF enucleation, fusion of one ASC or FB cell, and activation with 5μM ionomycin/6-(dimethylamino)purine (6DMAP). After activation, cloned embryos were aggregated (FB2X or ASC2X) or individually cultured (FB1X or ASC1X). Blastocyst rates were recorded at Day 7 of invitro culture. Three biological replicates were evaluated for each aim. Embryo developmental differences were determined using Fisher’s exact test. Relative expression of OCT4, SOX2, and KRT18 was measured by RTqPCR at the blastocyst stage and analysed by Kruskal–Wallis statistical test. Regarding aim 1, no differences for developmental rates were found for Day 0, 3, 4, and 5 groups (57%, 60%, 61.5%, 61%), but the blastocyst rate was only improved in Day 0 and Day 3 relative to their respective 1X controls (Day 0 2X 54.2% vs. Day 0 1X 25.5% and Day 3 2X 52.6% vs. Day 3 1X 25.3%). No aggregation occurred in Day 6 and Day 7 groups. All blastomeres were homogeneously distributed in the 2X blastocyst. Regarding aim 2, no effect of the donor cell was observed on the blastocyst rate (FB1X 26.8%, n=82; ASC1X 21.7%, n=198; FB2X 39.7%, n=126; ASC2X 33%, n=204), whereas EA improved the blastocyst rate of ASC-derived embryos (ASC1X 21.7% vs. ASC2X 33%). Overall, no synergistic effect of the use of both strategies was observed. Relative expression of KRT18 was significantly different between ASC1X and ASC2X embryos. Although OCT4 and SOX2 expression did not differ between groups, EA tended to bring the values closer to that of an IVF embryo. No effect of the donor cell was observed on the embryo relative expression. Our results suggest that EA at Day 0 improves the blastocyst rate in bovine SCNT and IVF embryos. EA of 2 ASC-derived embryos seemed to normalise the embryo quality and may improve post-implantation development.


Sign in / Sign up

Export Citation Format

Share Document