DISEASE RESISTANCE AND OTHER APPLICATIONS OF TRANSGENESIS IN THE CHICKEN

2013 ◽  
Vol 25 (1) ◽  
pp. 320
Author(s):  
Helen Sang

Genetic modification of the chicken in terms of gene addition is now robust and efficient. Transgenes can be introduced by injection of lentiviral vectors into chick embryos or by transfection of transposon vectors into embryos or primordial germ cells in vitro. Lentiviral vectors are limited in the size of transgene they can incorporate but we have generated several different transgenic lines using HIV-derived vectors and have observed high levels of transgene expression and tissue-specific expression using regulatory sequences from several genes. M. McGrew (The Roslin Institute) has established primordial germ cell lines and effective methods for transfection with piggyBac and Tol2 transposon vectors. The primordial cells are injected into chick embryos where they populate the developing gonads and contribute to the germline in mature birds. The availability of primordial germ cell lines will also form the basis of using artificial site-specific nucleases for gene knockout and potentially gene targeting in the chicken. These technologies facilitate the application of transgenesis in the chicken for basic research and for potential applications in poultry breeding. The chick embryo is an invaluable model for studying vertebrate development as the embryos can be accessed in ovo or in culture at the earlier stages of development. Embryos can be transfected with transgenes by electroporation and manipulated to study many aspects of development. We are developing transgenic chickens in which fluorescent protein reporters are expressed either ubiquitously or in targeted cell types. These form the basis of novel tools for increasing the value of the chick embryo in studying development. We provide fertile eggs from these lines to other research groups and are investigating the development of macrophages using a macrophage-targeted reporter. The potential for the use of genetic modification to be used in poultry breeding can now be explored. Commercial poultry production is challenged by several major pathogens including avian influenza. Flocks can be protected by good biosecurity measures and/or vaccination but vaccination is not always effective. It may be possible to add novel genes to the chicken genome targeting avian influenza virus replication. We are developing this approach (with L. Tiley, Cambridge University) and have generated transgenic chickens that do not transmit avian influenza when directly infected with H5N1 virus.

2006 ◽  
Vol 18 (2) ◽  
pp. 211
Author(s):  
T. Teramura ◽  
N. Kawata ◽  
N. Fujinami ◽  
M. Takenoshita ◽  
N. Sagawa ◽  
...  

Embryonic stem cells (ESCs) of nonhuman primate are important tools for human gametogenesis research. Generally, ESCs, embryos, and fetuses of nonhuman primates are similar to these of human. Recently, germ cell formation of mouse ESCs in vitro has been reported. In this study, we established new cynomolgus monkey ES (cyES) lines and determined germinal competency by assessing expression of mRNA markers. CyES lines were established using blastocysts produced by intracytoplasmic sperm injection (ICSI). For inducing super-ovulation, females were treated with 25 IU/kg pregnant mare serum gonadotropin (PMSG) once a day for 9 days, followed by 400 IU/kg hCG. Oocytes were collected 40 h after injection of hCG. After sperm injection, embryos were cultured in mCMRL medium to the blastocyst stage. For ES line establishment, inner cell masses (ICMs) were isolated by immunosurgery. ESC colonies emerged at about 10 days after ICM plating; three cyES cell lines were successfully obtained (3/11; 27.3%). We characterized these lines by immunocytochemistry for Oct-3/4, SSEA-3, and SSEA-4, which are diagnostic markers for primate ESCs, and by assay for alkaline phosphatase (ALP) activity. All cell lines expressed Oct-3/4, SSEA-4 and ALP activity. The previously reported SSEA-3 weak expression in cyES cells was not observed. These lines differentiated spontaneously when they were replaced in non-adherent culture (embryoid body: EB) or injected into SCID mice subcutaneously. To assess germ cell competency in vitro, we analyzed for the presence of vasa mRNA which shows a restricted expression pattern to germ cell formation, and DMC1 and SYCP1 which show specific existence on synaptonema complex in meiosis. Detection of these germ cell markers was performed by RT-PCR with total cDNA from ESCs and EBs. Nanog mRNA was detected only in ESCs. Oct-4 was detected in gonadal tissue of both sexes, ESCs, and EBs. Vasa was expressed in testis, but not in ESCs or somatic cells. Interestingly, we recognized weak expression of Vasa in Day 12-16 EBs. DMC1 and SYCP1 as meiosis markers were not detected. Because Oct-4 and Vasa mRNA are transcribed simultaneously, similar to that in the early part of gametogenesis such as the latter period of primordial germ cell (PGC) migration, PGC formation in cynomolgus EBs could occurr as in some cases of mouse or human EBs previously reported. Although detailed properties such as the functions of these Vasa-positive cells have not been confirmed, these results demonstrate that cyES cells obtained in the current study might contribute to putative germ cells in vitro by differentiating to EBs. This study was supported by a Grant-in-Aid for the 21st Century COE Program of the Japan Mext and by a grant for the Wakayama Prefecture Collaboration of Regional Entities for the Advancement of Technology Excellence of the JST.


genesis ◽  
2020 ◽  
Vol 58 (8) ◽  
Author(s):  
Yota Hagihara ◽  
Yuya Okuzaki ◽  
Kazuma Matsubayashi ◽  
Hidenori Kaneoka ◽  
Takayuki Suzuki ◽  
...  

2018 ◽  
Vol 2018 ◽  
pp. 1-17 ◽  
Author(s):  
Bence Lázár ◽  
Mahek Anand ◽  
Roland Tóth ◽  
Eszter Patakiné Várkonyi ◽  
Krisztina Liptói ◽  
...  

Primordial germ cells (PGCs) are the precursors of adult germ cells, and among the embryonic stem-like cells in the bird embryo, only they can transmit the genetic information to the next generation. Despite the wide range of applications, very little is known about the mechanism that governs primordial germ cell self-renewal and differentiation. As a first step, we compared 12 newly established chicken PGC lines derived from two different chicken breeds, performing CCK-8 proliferation assay. All of the lines were derived from individual embryos. A significant difference was found among the lines. As microRNAs have been proved to play a key role in the maintenance of pluripotency and the cell cycle regulation of stem cells, we continued with a complex miRNA analysis. We could discover miRNAs expressing differently in PGC lines with high proliferation rate, compared to PGC lines with low proliferation rate. We found that gga-miR-2127 expresses differently in female and male cell lines. The microarray analysis also revealed high expression level of the gga-miR-302b-3p strand (member of the miR-302/367 cluster) in slowly proliferating PGC lines compared to the gga-miR-302b-5p strand. We confirmed that the inhibition of miR-302b-5p significantly increases the doubling time of the examined PGC lines. In conclusion, we found that gga-miR-181-5p, gga-miR-2127, and members of the gga-miR-302/367 cluster have a dominant role in the regulation of avian primordial germ cell proliferation.


PLoS ONE ◽  
2018 ◽  
Vol 13 (4) ◽  
pp. e0196459
Author(s):  
Linglin Kong ◽  
Lingling Qiu ◽  
Qixin Guo ◽  
Ying Chen ◽  
Xin Zhang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document