scholarly journals 63 IMPROVED IN VITRO DEVELOPMENT OF PORCINE EMBRYOS PRODUCED BY NUCLEAR TRANSFER, IVF AND PARTHENOGENESIS

2005 ◽  
Vol 17 (2) ◽  
pp. 181 ◽  
Author(s):  
D. Sage ◽  
P. Hassel ◽  
B. Petersen ◽  
W. Mysegades ◽  
P. Westermann ◽  
...  

Porcine nuclear transfer (NT) is an inefficient process and it is necessary to use as many as 120 NT embryos for each foster mother to obtain small litters of live piglets. In these experiments, we evaluated the effects of culture atmosphere and medium on the development of NT embryos by monitoring blastocyst rate and cell number of Day 6 blastocysts. Age matched IVF and parthenogenetic embryos were also evaluated for comparison. For all experiments a pool of oocytes was aspirated from ovaries collected in a local abattoir. Following aspiration, oocytes were allowed to mature for 40 h in North Carolina State University (NCSU)-37 medium (supplemented with cAMP and hCG/eCG for the first 22 h). After removal of the cumulus cells, denuded oocytes with polar bodies were selected for NT, enucleated, fused with fetal fibroblasts, and sequentially activated electrically and chemically by 3 h of treatment with 6-dimethylaminopurine (6-DMAP). A second group of oocytes from the same denuded pool were maintained in TL-HEPES medium and activated in parallel with the NT group to produce parthenogenetic embryos. A third group was fertilized with frozen-thawed epididymal semen and co-cultured for ∼12 h to give IVF embryos. All three treatment groups were subdivided into a control subgroup and an experimental subgroup. In the first experiment, we compared the effects of atmosphere (20% vs. 5% oxygen) on in vitro embryonic development in NCSU-23 medium. In the second experiment, we used only the 5% oxygen concentration and compared different culture media. One subgroup was maintained in standard NCSU-23 medium and the second subgroup was cultured in a two-step system for the first 58 h in modified NCSU-23 (without glucose but supplemented with 2.0 mM lactate and 0.2 mM pyruvate), followed by addition of glucose to give a final concentration of 5.55 mM. Data were statistically analyzed by analysis of variance and chi square test. Blastocyst rate and mean cell number in all three embryo groups were improved under 5% oxygen. The most dramatic effect was observed in the NT group, in which the blastocyst rate increased significantly (P < 0.001) from 6.7% ± 5.9 (n = 279) to 19.6% ± 8.9 (n = 250) and mean cell number increased from 17.7 ± 12.1 to 25.8 ± 10.3 cells per blastocyst. With 5% oxygen there was also an increase of blastocyst rates and mean cell numbers in both IVF and parthenogenetic groups. In the second experiment, blastocyst rate for NT embryos increased significantly (P < 0.05) from 21.8% ± 7.6 (n = 242) in conventional NCSU-23 to 31.5% ± 11.0 (n = 271) in the modified system whereas there was almost no difference in the mean cell number of both groups (29.2 ± 4.3 vs. 31.5 ± 5.3). In the groups of IVF and parthenogenetic embryos no difference was found. These results indicate that both the reduced oxygen and the modified culture medium are important for pre-implantation development of porcine nuclear transfer embryos.

2007 ◽  
Vol 19 (1) ◽  
pp. 147
Author(s):  
H. T. Lee ◽  
J. M. Jang ◽  
S. H. Lee ◽  
M. K. Gupta

In vitro production of cloned porcine embryos by somatic cell nuclear transfer (SCNT) has become routine in several laboratories but the efficiency and quality of the resultant blastocysts remains sub-optimal. Cloned porcine blastocysts show low cell number, high fragmentation rate, and apoptosis which results in lower pregnancy rates upon embryo transfer. Earlier we reported that supplementation of culture media with amino acids benefit pre-implantation embryo development of in vivo- as well as in vitro-fertilized porcine embryos (Koo et al. 1997 Theriogenology 48, 791–802). This study evaluated how exogenous amino acids could affect pre-implantation development and quality of cloned or parthenogenetic porcine embryos. The effects of commercially available amino acids, referred to as Eagle&apos;s non-essential amino acids (NEAA), added or not added (control) to NCSU23 medium containing fatty acid-free BSA were studied. Oocytes recovered from abattoir-derived prepubertal porcine ovaries were matured in vitro and parthenogenetically activated (PA) or nuclear-transferred with fetal fibroblasts (SCNT), as described earlier (Uhm et al. 2000 Mol. Reprod. Dev. 57, 331–337). At 168 h post-activation, blastocysts were harvested for assessment of embryo quality by TUNEL labeling, Hoechst 33342 staining, and gene expression analysis. Results showed that, in the PA group, the cleavage rate was not affected by the supplementation of NEAA. However, the blastocyst rate was significantly improved when NEAA was present in the medium compared to that of the control group (38.9 &plusmn; 0.3 vs. 27.5 &plusmn; 0.3&percnt;, respectively) throughout the culture period. The supplementation during the pre-compaction period alone gave better results than during the post-compaction period alone (59.5 &plusmn; 0.9 vs. 33.4 &plusmn; 0.3&percnt;, respectively). In the SCNT group, however, both cleavage (73.6 &plusmn; 0.2 vs. 64.2 &plusmn; 0.4&percnt;) and blastocyst rate (18.7 &plusmn; 0.2 vs. 13.8 &plusmn; 0.3&percnt;) were improved by NEAA supplementation. Furthermore, these blastocysts had higher hatching ability (30.0 &plusmn; 1.8 vs. 14.6 &plusmn; 4.9&percnt;) than those of control group (P &lt; 0.05). Supplementation of NEAA also increased the mean nuclei number of PA-derived (76.1 &plusmn; 4.9 vs. 66.5 &plusmn; 3.3) as well as SCNT-derived (43.1 &plusmn; 2.6 vs. 31.8 &plusmn; 1.9) blastocysts and reduced the time during which blastocysts formed. TUNEL assay revealed that incidence of nuclear fragmentation and apotosis was reduced by NEAA. Real-time qRT-PCR for Bax and Bcl-XL transcripts revealed that the relative abundance of Bax was reduced while that of Bcl-XL was increased. These effects were more pronounced when NEAA was present during the pre-compaction period alone. Thus, our data suggest that NEAA improves the yield and quality of cloned porcine embryos by enhancing blastocyst expansion and positively modulating the total cell number and apoptosis. These data may have implications for understanding the nutritional needs of cloned porcine embryos produced in vitro and for optimizing the composition of culture media to support their development. This work was supported by the Research Project on the Production of Bio-Organs (No. 200503030201), Ministry of Agriculture and Forestry, Republic of Korea.


2014 ◽  
Vol 26 (1) ◽  
pp. 123
Author(s):  
Y. Liu ◽  
A. Lucas-Hahn ◽  
B. Petersen ◽  
R. Li ◽  
P. Hassel ◽  
...  

Two nuclear transfer (NT) techniques are routinely used to produce cloned animals, traditional cloning (TC) and handmade cloning (HMC). The TC embryos keep their zona and can be transferred at early stages, whereas HMC embryos are zona-free and must be cultured to the morula/blastocyst stage before transfer. Some studies have shown that in vitro culture reduces embryo development and quality, but it is not known whether embryos produced by TC or HMC differ because of the NT method or the in vitro culture. Therefore, we investigated the developmental competence and histone acetylation (H3K18ac) of porcine NT embryos produced by TC and HMC with (Day 5 and 6) or without (Day 0) in vitro culture. Nuclear transfer experiments were performed on same day (Day 0), using same batch of porcine oocytes and donor cells and same in vitro culture conditions. Cloning procedures were previously described (TC : Cloning Stem Cells 10 : 355; HMC : Zygote 20 : 61). Parthenogenetically activated embryos (PA) were used as control of activation and culture conditions. Embryos from all groups were collected for immunostaining of H3K18ac on Days 0, 5, and 6. The normalized H3K18ac level was calculated as previously described (Epigenetics 6 : 177). Cell numbers per blastocyst in each group were counted on Days 5 and 6. The cleavage rate (Day 2) and blastocyst rates (Days 5 and 6) between groups were analysed by Chi-squared test, whereas cell number per blastocysts and H3K18ac level between groups and days were analysed by ANOVA (SAS version 9.2; SAS Institute Inc., Cary, NC, USA). Cleavage rate of HMC embryos was lower than that of TC embryos, but blastocyst rate and cell number per blastocyst were higher in the HMC group compared with TC (Table 1). Differences of H3K18ac level between HMC, TC, and PA groups were only observed on Day 6 but not on Day 0 or Day 5. Within HMC and TC groups, there was no difference in H3K18ac level between Day 0 and Day 5, but the level was lower on Day 6 compared with Day 5 in the HMC group, whereas the TC group displayed the opposite pattern. In conclusion, NT embryos produced by HMC show higher blastocyst rate and cell number per blastocyst compared with TC embryos. Both in vitro culture and the NT method result in differences of the normalized H3K18ac levels. Further study is needed to investigate putative differences between NT embryos produced by HMC and TC compared to in vivo embryos also after transfer to recipients. Table 1.Cleavage and blastocyst rate, cell numbers, and normalized H3K18ac level for handmade cloning (HMC), traditional cloning (TC), and parthenogenetically activated (PA) embryos1


2009 ◽  
Vol 21 (1) ◽  
pp. 121
Author(s):  
L. Lin ◽  
P. Kragh ◽  
S. Purup ◽  
Y. Du ◽  
X. Zhang ◽  
...  

Modified environmental stress was reported to improve the developmental competence and cryotolerance of porcine oocytes, such as high hydrostatic pressure (HHP; Du et al. 2008 Cloning Stem Cells, Epub ahead of print) and osmotic stress (Lin et al. 2008 Reprod. Biomed. Online, in press). HHP also improved the cryotolerance of bovine and murine blastocysts (Pribenszky et al. 2005a Reprod. Dom. Anim. 40, 338–344; Pribenszky et al. 2005b Anim. Reprod. Sci. 87, 143–150). In the present study we compared the effects of NaCl with that of concentrated solutions of two non-permeable osmotic agents, sucrose and trehalose on in vitro maturated oocytes. A total of 2050 slaughterhouse-derived porcine cumulus–oocyte complexes (COCs) were matured for 41–42 h, and then put into 800 μL T2 (HEPES-buffered TCM-199 [Earle’s salts] with 2% cattle serum) supplemented with additional NaCl, sucrose or trehalose with the same osmotic level (588 mOsmol) in 4-well dishes and incubated for 1 h at 38.5°C in air. COCs incubated in T2 under the same conditions without supplementation were used as controls. Subsequently COCs were incubated in IVM medium for 1 h at 38.5°C in 5% CO2 with maximum humidity. After this recovery period cumulus cells were removed with 1 mg mL–1 hyaluronidase and pipetting, and oocytes were used as recipients for somatic nuclear transfer with handmade cloning (HMC) method. Porcine fetal fibroblasts were used as nuclear donor cells. Embryo culture was performed in PZM-3 medium (Yoshioka et al. 2002 Biol. Reprod. 66, 112–119) in 5% CO2, 5% O2 and 90% N2 and maximum humidity. Cleavage and blastocyst rates were checked on Day 1 and Day 6, respectively. Cell numbers were counted after fixation in glycerol containing 20 μg mL–1 Hoechst 33342 fluorochrome on Day 6. t-test was performed for statistical calculations with SPSS 11.0 program (SPSS, Chicago, IL, USA). Results are shown in Table 1. Osmotic stress with both permeable and non-permeable agents increased developmental competence of porcine IVM oocytes. NaCl seems to be more appropriate for the purpose, as the other two components resulted in decreased cell number in blastocysts after somatic cell nuclear transfer (SCNT). In conclusion, a simple NaCl pre-treatment of oocytes has improved the in vitro efficiency of porcine SCNT. Table 1.Developmental competence of porcine HMC embryos derived from oocytes treated with different agents The authors thank Ruth Kristensen, Anette Pedersen, Janne Adamsen and Klaus Villemoes for their help and excellent technical assistance.


2007 ◽  
Vol 19 (1) ◽  
pp. 147
Author(s):  
E. Lee ◽  
K. Song ◽  
Y. Jeong ◽  
S. Hyun

Generally, blastocyst (BL) formation and embryo cell number are used as main parameters to evaluate the viability and quality of in vitro-produced somatic cell nuclear transfer (SCNT) embryos. We investigated whether in vitro development of SCNT pig embryos correlates with in vivo viability after transfer to surrogates. For SCNT, cumulus–oocyte complexes (COCs) were matured in TCM-199 supplemented with follicular fluid, hormones, EGF, cysteine, and insulin for the first 22 h and in a hormone-free medium for 18 h. Three sources of pig skin cells were used as nuclear donor: (1) skin fibroblasts of a cloned piglet that were produced by SCNT of fetal fibroblasts from a Landrace × Yorkshire × Duroc F1 hybrid (LYD), (2) skin fibroblasts of a miniature pig having the human decay accelerating factor gene (hDAF-MP), and (3) skin fibroblasts of a miniature pig with a different strain (MP). MII oocytes were enucleated, subjected to nuclear transfer from a donor cell, electrically fused, and activated 1 h after fusion. SCNT embryos were cultured in a modified NCSU-23 (Park Y et al. 2005 Zygote 13, 269–275) for 6 days or surgically transferred (110–150 fused embryos) into the oviduct of a surrogate that showed standing estrus on the same day as SCNT. Embryos were examined for cleavage and BL formation on Days 2 and 6, respectively (Day 0 = the day of SCNT). BLs were examined for their cell number after staining with Hoechst 33342. Pregnancy was diagnosed by ultrasound 30 and 60 days after embryo transfer. Embryo cleavage was not affected by donor cells (82, 81, and 72% for LYD, hDAF-MP, and MP, respectively), but BL formation was higher (P &lt; 0.05) in hDAF-MP (16%) than in LYD (9%) and MP (6%). MP showed higher (P &lt; 0.05) BL cell number (46 cells/BL) than hDAF-MP (34 cells) but did not show a difference from LYD (37 cells). LYD and MP showed higher pregnancy rates (Table 1) on Days 30 and 60, even though they showed lower BL formation in vitro. Due to a relatively small number of embryo transfers through a limited period, we could not exclude any possible effects by seasonal or operational differences. These results indicated that pregnancy did not correlate with in vitro BL formation of SCNT pig embryos but rather were affected by the source of donor cells. Table 1.In vivo development of somatic cell nuclear transfer pig embryos derived from different sources of donor cells This work was supported by the Research Project on the Production of Bio-organs (No. 200506020601), Ministry of Agriculture and Forestry, Republic of Korea.


SPERMOVA ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 46-52
Author(s):  
Irving Laines-Arce ◽  
◽  
Mijail Contreras ◽  
Cesar Olaguivel

The present study aims to evaluate the effect of two culture media on the production of in vitro embryos in alpacas (Vicugna pacos). The ovaries were transported at 10.52° C in 0.9% saline solution supplemented with gentamicin. The ovaries were transported at 10.52° C in 0.9% physiological saline solution supplemented with gentamicin. 492 ovaries were used throughout the experiment. 2142 oocytes of quality I, II and III were recovered. The oocytes were matured in vitro for 32 h and were subsequently fertilized (incubated for 18 h) with sperm obtained from the tail of the epididymis and selected with a 45/90 percoll gradient. Then, the presumed zygotes were denuded from the cumulus cells, to later be cultured in two culture media: synthetic oviductal fluid medium (SOFaa) and simple optimized potassium medium (KSOMaa) and incubated at 38.5 ° C, 5 % CO2, 5%, O2, and 90% relative humidity for 7 days. Morula and blastocyst rate evaluation was performed at the end of embryo culture. The morula rate at 7 days was 41.49 ± 10.52 and 41.51 ± 6.50% for KSOMaa and SOFaa, respectively (P <0.05). The blastocyst rate for the two culture media KSOMaa and SOFaa, was 14.08 ± 5.17 and 11.73 ± 5.69 %, respectively, and there were no statistical differences (P˃0.05). The embryonic quality in KSOMaa and SOFaa media did not show statistical differences. In conclusion, the KSOMaa and SOFaa culture medium can be used in the production of in vitro embryos of alpacas


2015 ◽  
Vol 27 (1) ◽  
pp. 107
Author(s):  
R. Koppang ◽  
N. R. Mtango ◽  
M. Barcelo-Fimbres ◽  
J. P. Verstegen

Porcine somatic cell nuclear transfer (SCNT) is limited to the same or next day surgical embryo transfer due to poor culture conditions in vitro. In this study, we aimed to overcome this problem by treating SCNT embryos with scriptaid, an inhibitor of histone deacetylase (HDACi) that helps with epigenetic reprogramming of the somatic nuclei. Scriptaid was chosen over other HDACi because it has been shown to improve histone acetylation in the same pattern as that of IVF embryos as well as its low toxicity characteristic (Zhao et al. 2009 Biol. Reprod. 81, 525–530; Zhao et al. 2010 Cell Reprogram. 12, 75–78). An inbred miniature pig fetal fibroblast cell line that is known to give low blastocyst rate in culture was used as a source of donor cells transferred into enucleated oocytes. Traditional SCNT was performed; embryos were fused and chemically activated in 10 µM ionomycin for 5 min and 2 mM DMAP for 3 to 4 h before being transferred into scriptaid. Embryos were treated with 500 nM scriptaid (Zhao et al. 2010) for 18 h and the untreated group was used as control. A total of 806 oocytes were used in 8 replicates. The constructed embryos were cultured in modified porcine zygote medium 5 (mPZM-5) for 7 days at 39°C in 5% O2, 5% CO2, 90% N2 atmosphere. Cleavage rates were assessed at 2.5 days and blastocyst rates at Day 7 after activation. Data were analysed by ANOVA using GLM, and percentages were transformed using arcsin square root using Statistix 10 software (Tallahassee, FL, USA). There were no differences in cleavage rates for control group v. scriptaid (55.3 v. 49.9%; P > 0.1; Table 1). The blastocyst rate per construct showed remarkable increase in the scriptaid treated group compared with the control group (12.8 v. 2.2%; P < 0.01; Table 1). Similarly, a significant effect was observed for blastocyst per embryos cleaved where scriptaid had higher rates compared with control (25.8 v. 5.8%; P < 0.01). These results indicated that improving nuclear reprogramming of miniature porcine SCNT clones by scriptaid treatment enhanced blastocyst production during the in vitro culture of porcine embryos. Table 1.Mean (± s.e.m.) measures of embryonic development of SCNT embryos


Zygote ◽  
2009 ◽  
Vol 17 (3) ◽  
pp. 195-202 ◽  
Author(s):  
Atsushi Sugawara ◽  
Satoshi Sugimura ◽  
Yumi Hoshino ◽  
Eimei Sato

SummaryCloning that uses somatic cell nuclear transfer (SCNT) technology with gene targeting could be a potential alternative approach to obtain valuable rat models. In the present study, we determined the developmental competence of rat SCNT embryos constructed using murine and porcine oocytes at metaphase II (MII). Further, we assessed the effects of certain factors, such as: (i) the donor cell type (fetal fibroblasts or cumulus cells); and (ii) premature chromosome condensation (PCC) with normal spindle formation, on the developmental competence of rat interspecies SCNT (iSCNT) embryos. iSCNT embryos that had been constructed using porcine oocytes developed to the blastocyst stage, while those embryos made using murine MII oocytes did not. Rat iSCNT embryos constructed with green fluorescent protein (GFP)-expressing fetal fibroblasts injected into porcine oocytes showed considerable PCC with a normal bipolar spindle formation. The total cell number of iSCNT blastocyst derived from GFP-expressing fetal fibroblasts was higher than the number derived from cumulus cells. In addition, these embryos expressed GFP at the blastocyst stage. This paper is the first report to show that rat SCNT embryos constructed using porcine MII oocytes have the potential to develop to the blastocyst stage in vitro. Thus the iSCNT technique, when performed using porcine MII oocytes, could provide a new bioassay system for the evaluatation of the developmental competence of rat somatic cells.


2015 ◽  
Vol 27 (1) ◽  
pp. 269
Author(s):  
A. De Stefano ◽  
A. Gambini ◽  
D. Salamone

Embryo aggregation has been shown to improve embryo development in several species. However, the effects seem to be different among species. Thus, the aim of this study was to compare the effect of embryo aggregation over in vitro development and blastocyst quality of bovine and feline parthenogenetic (PA) embryos. To this aim, bovine cumulus-oocyte complexes (COC) were collected from slaughterhouse ovaries, whereas cat ovaries were obtained from ovariectomized animals. The COC were in vitro matured in TCM199 supplemented following standard protocols for each species. After 24 h, cumulus cells and zona pellucidae were removed. Matured oocytes were selected and activated by 5 µM ionomycin treatment for 4 min followed by incubation in 1.9 mM 6-DMAP. Bovine and feline PA embryos were cultured in SOF medium in the well of well system in two different groups: only one PA embryo per microwell (1X); and three PA embryos per microwell (3X, aggregated embryos). Cleavage and blastocyst rates from all groups were assessed at Days 2 and 7, respectively. Size of blastocysts was measured at Day 7 using a millimetre eyepiece, and total cell number was determined by Hoechst 33342 staining. Blastocyst rates and embryo size were analysed by Fisher's test (P < 0.05) and total cell numbers by Kruskal–Wallis test with Dunn's correction (P < 0.05). Statistical differences were found in PA blastocyst rates between experimental groups (1X: 15/104, 24.6% v. 3X: 27/37, 62.2% for feline; and 1X: 21/113, 19.4% v. 3X: 20/32, 62.5% for bovine), but no differences were found between species. In addition, there was no statistical difference in the number of blastocysts obtained per oocyte used in any of the experimental groups. Bovine aggregated PA blastocysts were significantly larger than non-aggregated embryos (>200 microns, 1X: 2/20, 10% v. 3X: 9/19, 47.4%), but no differences were found in cell number. On the other hand, cat aggregated PA blastocysts had significantly higher cell numbers (1X: 122.4 ± 79.66 cells v. 3X: 259.8 ± 137.1 cells), but no differences were found in blastocyst size. This observation can contribute in the understanding of embryo physiology, suggesting that benefits of embryo aggregation in parthenogenic embryos vary among these species.


Zygote ◽  
2003 ◽  
Vol 11 (2) ◽  
pp. 151-158 ◽  
Author(s):  
Rita P. Cervera ◽  
Fernando García-Ximénez

The present study in rabbits compared, in the first experiment, the effect of two commonly used oocyte ages, 13 h and 17 h after ovulation induction treatment, on the technical efficiency of somatic nuclear transfer steps, using fresh cumulus cells as nuclear donors. Recently ovulated metaphase II oocytes (13 h) showed higher fusion (13 h: 83% vs 17 h: 67%, p < 0.05) and in vitro development rates than in vivo slightly aged metaphase II oocytes (morula, 13 h: 74% vs 17 h: 25%, p < 0.05; blastocyst, 13 h: 16% vs 17 h: 8%; p < 0.05). In contrast, activation rate was higher in the 17 h group (13 h: 45% vs 17 h: 67%; p < 0.05). In a second experiment, using recently ovulated oocytes (13 h) as recipients, two donor cell types (from primary cultures of either cumulus cells or fetal fibroblasts) were tested to evaluate their effects on the efficiencies of the different technical steps of somatic nuclear transfer procedure. A better fusion rate was obtained when fetal fibroblasts were used as nuclear donors (cumulus cells: 45% vs fetal fibroblasts: 67%, p < 0.05). No statistically significant differences were detected in cleavage rate regardless of the cell type used (cumulus cells: 44% vs fetal fibroblasts: 60%, p > 0.05). However, in vitro development to morula (cumulus cells: 41% vs fetal fibroblasts: 14%, p < 0.05) and to blastocyst stage (cumulus cells: 27% vs fetal fibroblasts: 3%, p < 0.05) were different between cell types.


2005 ◽  
Vol 17 (2) ◽  
pp. 187 ◽  
Author(s):  
F. Yang ◽  
B. Kessler ◽  
S. Ewerling ◽  
E. Wolf ◽  
V. Zakhartchenko

Cloned rabbits have been obtained by somatic cell nuclear transfer (SCNT) only with fresh, non-cultured cumulus cells (Chesne et al. 2002 Nat. Biotechnol. 20, 366–369). For the purpose of generating transgenic animals by SCNT, donor cells must be cultured and modified prior to use as nuclear donors. The objective of this study was to optimize the SCNT procedure using cultured cumulus or fibroblast cells. MII oocytes were harvested from superovulated Zika rabbits, and maternal chromosomes were removed by demecolcine-assisted enucleation (Yin et al. 2002 Biol. Reprod. 67, 442–446). Two types of somatic cells originating from Ali/Bass rabbits were used as nuclear donors: cumulus cells collected from in vivo-matured oocytes and cultured for 1–5 passages, and primary fetal fibroblasts obtained from Day 16 fetuses and grown to confluence or starved for 4–5 days. Somatic donor cells and recipient cytoplasts were fused with 2 electric pulses (1.95 kV/cm, 25 μs each, 1 s interval). Twenty to 40 min after fusion, cloned embryos were activated first with the same electropulses as for fusion, and then immediately followed by 1 h incubation in 2 mM 6-dimethylaminopurine and 5 μg/mL cytochalasin B in culture medium (B2 medium supplemented with 10% FCS). Cloned embryos were either transferred at the 2- and 4-cell stage to asynchronized recipients or cultured in vitro for 6 days. Data were compared using chi-square test, and differences were considered significant when P < 0.05. Our results demonstrate that cloned rabbits can be produced by SCNT with cultured cells but the efficiency of this technique is still very low irrespective of the type of donor cells. Table 1. Development of cloned embryos derived from somatic cells This research was supported by the Therapeutic Human Polyclonals, Inc.


Sign in / Sign up

Export Citation Format

Share Document