63 THE EFFECT OF A MODIFIED CRYOPRESERVATION METHOD ON THE VIABILITY OF FROZEN–THAWED PRIMORDIAL GERM CELL ON THE KOREAN NATIVE CHICKEN (Ogye)

2014 ◽  
Vol 26 (1) ◽  
pp. 145
Author(s):  
H. Kim ◽  
D. H. Kim ◽  
J. Y. Han ◽  
S. B. Choi ◽  
Y.-G. Ko ◽  
...  

Cryopreservation of poultry semen has been reported, but preservation of female genetic material has not been possible because of the unique anatomical and physiological characteristics of the avian egg. Thus, conservation of genetic material in chickens was attempted by preserving primordial germ cells (PGC) in LN2. This study established a method for preserving chicken PGC that enables long-term storage in LN2 for preservation of species. The purpose of this study was to clarify the effects of fetal bovine serum (FBS) or chicken serum (CS) treatment on the viability of cryopreserved PGC in the Korean native chicken (Ogye). Primordial germ cells were separated from a germinal gonad using a fine glass micropipette under a microscope and were suspended in a freezing medium containing freezing and protecting agents [e.g. dimethyl sulfoxide (DMSO) and ethylene glycol (EG)]. The PGC were then purified using the magnetic-activated cell sorting (MACS) method. The viability of the PGC in both groups was determined by the trypan blue exclusion method. The values of the 0, 5, 10, and 15% DMSO plus FBS treatment were 21.6, 30.36, 36.42, 50.39, and 48.36%, respectively. The viability of PGC after freeze-thawing was significantly higher for the 10% EG plus FBS treatment than for the 10% EG plus CS treatment (P < 0.05; 64.36 v. 50.66%). This study established a method for preserving chicken PGC that enables systematic storage and labelling of cryopreserved PGC in LN2 at a germplasm repository and ease of entry into a database. In the future, the importance of this new technology is that poultry lines can be conserved while work is being conducted on improving the production of germ line chimeras.

2014 ◽  
Vol 41 (4) ◽  
pp. 249-259
Author(s):  
Hyun Kim ◽  
Young Moo Cho ◽  
Jae Yong Han ◽  
Sung Bok Choi ◽  
Mi Jeong Byun ◽  
...  

Development ◽  
1995 ◽  
Vol 121 (9) ◽  
pp. 2961-2972 ◽  
Author(s):  
S. Strome ◽  
P. Martin ◽  
E. Schierenberg ◽  
J. Paulsen

Mutations in the maternal-effect sterile gene mes-1 cause the offspring of homozygous mutant mothers to develop into sterile adults. Lineage analysis revealed that mutant offspring are sterile because they fail to form primordial germ cells during embryogenesis. In wild-type embryos, the primordial germ cell P4 is generated via a series of four unequal stem-cell divisions of the zygote. mes-1 embryos display a premature and progressive loss of polarity in these divisions: P0 and P1 undergo apparently normal unequal divisions and cytoplasmic partitioning, but P2 (in some embryos) and P3 (in most embryos) display defects in cleavage asymmetry and fail to partition lineage-specific components to only one daughter cell. As an apparent consequence of these defects, P4 is transformed into a muscle precursor, like its somatic sister cell D, and generates up to 20 body muscle cells instead of germ cells. Our results show that the wild-type mes-1 gene participates in promoting unequal germ-line divisions and asymmetric partitioning events and thus the determination of cell fate in early C. elegans embryos.


2013 ◽  
Vol 40 (3) ◽  
pp. 163-169
Author(s):  
Hyun Kim ◽  
Dong Hun Kim ◽  
Jae Yong Han ◽  
Yoon Jung Do ◽  
Jae Hwan Kim ◽  
...  

Genes ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 1090
Author(s):  
Aleksandra Dunislawska ◽  
Maria Siwek ◽  
Katarzyna Stadnicka ◽  
Marek Bednarczyk

The Green-legged Partridgelike fowl is a native, dual-purpose Polish chicken. The White Leghorn has been intensively selected for several decades to mainly improve reproductive traits. Primordial germ cells (PGCs) represent the germline stem cells in chickens and are the only cells that can transfer the information stored in the genetic material from generation to generation. The aim of the study was to carry out a transcriptomic and an epigenetic comparison of the White Leghorn and Green-legged Partridgelike gonadal PGCs (gPGCs) at three developmental stages: days 4.5, 8, and 12 of the embryonic development. RNA and DNA were isolated from collected gPGCs. The RNA was further subjected to microarray analysis. An epigenetic analysis was performed based on the global methylation analysis and qMSP method for the particular silenced genes demonstrated in transcriptomic analysis. Statistically significant differences between the gPGCs from both breeds were detected on the day 8 of embryonic development. Global methylation analysis showed significant changes at the methylation level in the White Leghorn gPGCs on day 8 of embryonic development. The results suggest faster development of Green-legged Partridgelike embryos as compared to White Leghorn embryos. Changes in the levels of gene expression during embryonic development are determined by genetic and environmental factors, and this variability is influenced by breed and gender.


Development ◽  
2022 ◽  
Author(s):  
Yuki Naitou ◽  
Go Nagamatsu ◽  
Nobuhiko Hamazaki ◽  
Kenjiro Shirane ◽  
Masafumi Hayashi ◽  
...  

In mammals, primordial germ cells (PGCs), the origin of the germ line, are specified from the epiblast at the posterior region where gastrulation simultaneously occurs, yet the functional relationship between PGC specification and gastrulation remains unclear. Here, we show that Ovol2, a transcription factor conserved across the animal kingdom, balances these major developmental processes by repressing the epithelial-to-mesenchymal transition (EMT) driving gastrulation and the upregulation of genes associated with PGC specification. Ovol2a, a splice variant encoding a repressor domain, directly regulates EMT-related genes and consequently induces re-acquisition of potential pluripotency during PGC specification, whereas Ovol2b, another splice variant missing the repressor domain, directly upregulates genes associated with PGC specification. Taken together, these results elucidate the molecular mechanism underlying allocation of the germ line among epiblast cells differentiating into somatic cells through gastrulation.


Development ◽  
1981 ◽  
Vol 64 (1) ◽  
pp. 251-258
Author(s):  
Andy McMahon ◽  
Mandy Fosten ◽  
Marilyn Monk

The pattern of expression of the two X chromosomes was investigated in pre-meiotic germ cells from 12½-day-old female embryos heterozygous for the variant electrophoretic forms of the X-linked enzyme phosphoglycerate kinase (PGK-1). If such germ cells carry the preferentially active Searle's translocated X chromosome (Lyon, Searle, Ford & Ohno, 1964), then only the Pgk-1 allele on this chromosome is expressed. This confirms Johnston's evidence (1979,1981) that Pgk-1 expression reflects a single active X chromosome at this time. Extracts of 12½-day germ cells from heterozygous females carrying two normal X chromosomes show both the A and the B forms of PGK; since only one X chromosome in each cell is active, different alleles must be expressed in different cells, suggesting that X-chromosome inactivation is normally random in the germ line. This result makes it unlikely that germ cells are derived from the yolk-sac endoderm where the paternally derived X chromosome is preferentially inactivated. In their pattern of X-chromosome inactivation, germ cells evidently resemble other tissues derived from the epiblast.


Development ◽  
1990 ◽  
Vol 109 (4) ◽  
pp. 911-923 ◽  
Author(s):  
A. Orr-Urtreger ◽  
A. Avivi ◽  
Y. Zimmer ◽  
D. Givol ◽  
Y. Yarden ◽  
...  

Developmental expression of the c-kit proto-oncogene, a receptor tyrosine kinase encoded by the W locus, was investigated by in situ hybridization in normal mouse embryos. Early after implantation transcripts were detectable only in the maternal placenta (6 1/2-7 1/2 days p.c.). Subsequently (8 1/2 days p.c.) numerous ectodermal (neural tube, sensory placodes) and endodermal (embryonic gut) derivatives expressed c-kit. Later transcripts were detected also in the blood islands of the yolk sac and in the embryonic liver, the main sites of embryonic hemopoiesis. Around midgestation, transcripts accumulated in the branchial pouches and also in primordial germ cells of the genital ridges. This complex pattern of expression remained characteristic also later in gestation, when c-kit was expressed in highly differentiated structures of the craniofacial area, in presumptive melanoblasts and in the CNS. In the adult ovary, maternal c-kit transcripts were detected. They were present in the oocytes of both immature and mature ovarian follicles, but not in the male germ line, where c-kit expression may be down regulated. Thus, c-kit activity is complex and appears in multiple tissues including those that also display defects in mutations at the W locus where c-kit is encoded. Correlation between W phenotypes and c-kit expression, as well as the regulation of the complex and multiple expression of polypeptide growth factors and receptors, is discussed.


Development ◽  
1988 ◽  
Vol 102 (3) ◽  
pp. 527-535
Author(s):  
K. Ikenishi ◽  
Y. Tsuzaki

To determine whether the location of ‘germ plasm’-bearing cells [presumptive primordial germ cells (pPGCs)] is crucial for their differentiation into PGCs in Xenopus, [3H]thymidine-labelled pPGCs were implanted into the anterior or posterior halves of the endoderm in unlabelled host neurulae. Labelled PGCs in the genital ridges of experimental tadpoles were investigated by autoradiography. When the labelled pPGCs were implanted into posterior halves of the endoderm where host pPGCs are situated, 65 and 77% of the experimental tadpoles (designated as p-tadpoles) had the labelled PGCs in series I and II, respectively. When implanted into the anterior halves, 20 and 27% of the experimental tadpoles (a- tadpoles) had the labelled PGCs in series I and II, respectively. In p-tadpoles, the average numbers of labelled PGCs per tadpole were 8á7 in series I and 10 in series II, whereas they were 2á0 in a-tadpoles of both series. Both the proportion and the average number in p-tadpoles of both series were significantly different from those in a-tadpoles. In both series, labelled PGCs in p-tadpoles were found to be distributed throughout the genital ridges while those in a-tadpoles were localized only in the anterior part of the ridges. These facts indicate that the location of pPGCs in the endoderm affects their successful migration into the genital ridges, and that not only the presence of the germ plasm but also the proper location in endoderm are prerequisites to PGC differentiation of the germ line cells.


Sign in / Sign up

Export Citation Format

Share Document