61 REVERSIBLE INHIBITION OF BOVINE MINOR EMBRYONIC GENOME ACTIVATION IMPAIRS PRE-IMPLANTATION DEVELOPMENT

2017 ◽  
Vol 29 (1) ◽  
pp. 138
Author(s):  
R. P. Nociti ◽  
R. V. Sampaio ◽  
V. F. M. H. de Lima ◽  
R. M. Schultz ◽  
P. J. Ross

Bovine pre-implantation embryos can develop in the absence of gene expression up to the 8/16-cell stage, the time when the major embryonic genome activation (EGA) occurs. Some embryonic genes, however, are transcribed before EGA (minor EGA). This study used a reversible inhibitor of RNA Polymerase II (5,6 dichlorobenzimidazole 1-β-D-ribofuranoside; DRB) to assess the importance of minor EGA for development to the blastocyst stage. Oocytes were matured and inseminated in vitro, and the fertilized eggs were cultured in supplemented KSOMaa and allocated to different treatments 16 h post-insemination (hpi). Development was recorded at 44 and 72 hpi, and the incidence of blastocyst formation on Day 7 (IVF = Day 0) was recorded. Data were analysed by ANOVA followed by Duncan test. First, we tested different DRB concentrations [50 μM (D50), 75 μM (D75), 100 μM (D100), and dimethyl sulfoxide vehicle control (CTRL)] to block development to blastocyst when continuously present. Only embryos in CTRL produced blastocysts (45.0 ± 5.8%; 4 replicates with a total of 391 oocytes examined). No difference in development was observed at 44 h (57.9 ± 16.5, 53.3 ± 10.5, 60.5 ± 19.0, and 52.3 ± 5.8% for D50, D75, D100, and CTRL, respectively) and 72 h (78.9 ± 8.8, 66.1 ± 11.7, 71.5 ± 16.5, and 70.8 ± 5.6% for D50, D75, D100, and CTRL, respectively). Next, in 7 replicates (751 oocytes) we determined the effect of blocking transcription (50 μM DRB) spanning 2 embryo stages (periods of 28 h), initiated at 16 hpi (1&2C), 30 hpi (2&4C), and 44 hpi (4&8C). Controls included DRB treatment from 16 to 72 hpi (1–8C) and CTRL. There was no difference in development at 44 and 72 h. The incidence of blastocyst formation, however, was significantly decreased in all treatment groups compared with CTRL (27.7 ± 4.7; 15.1 ± 3.5; 23.3 ± 3.1; 20.5 ± 1.9; and 42.1 ± 3.2% for 1&2C, 2&4C, 4&8C, 1–8C, and CTRL, respectively). Finally, in 12 replicates (1499 oocytes), the effect of blocking transcription for 14-h periods, spanning mostly a unique cleavage stage, was evaluated. The DRB treatment (50 μM) started at 16 hpi (1C), 30 hpi (2C), 44 hpi (4C), and 58 hpi (8C). Furthermore, 1–16C and CTRL treatments were included. No difference in development at 44 and 72 h were observed. Development to the blastocyst was significantly lower from CTRL (46.0 ± 3.2%) in 2C, 4C, 8C, and 1–16C (28.9 ± 3.9, 26.1 ± 4.2, 30.1 ± 4.8, and 18.9 ± 3.2%, respectively) but not in 1C (34.7 ± 4.4%). In summary, continuous transcriptional inhibition using DRB resulted in a developmental block at the time of major EGA, similar to α-amanitin treatment (an irreversible RNA Polymerase II inhibitor). Transcriptional inhibition during single cleavage stages was sufficient to decrease the developmental potential of the embryo. We conclude that minor EGA has an important role for bovine development. This work was funded by NIH-NICHD R01HD070044 to P. J. Ross. R. P. Nociti was sponsored by CNPQ; R. V. Sampaio was sponsored by FAPESP.

Biologia ◽  
2010 ◽  
Vol 65 (3) ◽  
Author(s):  
Mária Kovalská ◽  
Ida Petrovičová ◽  
František Strejček ◽  
Marian Adamkov ◽  
Erika Halašová ◽  
...  

AbstractThe early stages of embryonic development are maternally driven. As development proceeds, maternally inherited informational molecules decay, and embryogenesis becomes dependent on de novo synthesized RNAs of embryonic genome. The aim of the present study is to investigate the role of de novo transcription in the development of embryos during embryonic genome activation. Autoradiography for detection of transcriptional activity and transmission electron microscopy were applied in in vitro produced bovine embryos cultured to the late 8-cell stage with or without (control group) α-amanitin, specific inhibitor of RNA-polymerases II and III transcription. The α-amanitin (AA) groups presented three sets of embryos cultivated with AA in different time intervals (6, 9 and 12 h). In control group, nucleoplasm and nucleolar structures displayed strong autoradiographic labeling and showed initial development of fibrillo-granular nucleoli. In α-amanitin groups, lack of autoradiographic labeling and disintegrated nucleolus precursor bodies (NPBs) stage were observed. Inhibition of RNA polymerase II (RNA pol II) already in the early phases of embryonic genome activation has detrimental effect on nucleolar formation and embryo survival, what was shown for the first time.


2007 ◽  
Vol 19 (1) ◽  
pp. 120 ◽  
Author(s):  
O. Svarcova ◽  
P. Maddox-Hyttel ◽  
H. Niemann ◽  
D. Hermann ◽  
Z. Rasmussen ◽  
...  

The development of a functional nucleolus accompanying the major embryonic genome activation (EGA) is considered a marker for embryo quality and viability. However, the use of this marker is limited by the lack of accurate knowledge of the biology of embryonic nucleologenesis. The objective of this study was to elucidate the role of RNA polymerase I (RPI) and total transcriptional activity, reflecting EGA, for nucleologenesis in in vivo-developed porcine embryos. Late 4-cell-stage embryos were cultured in the absence (control) or presence of actinomycin D (AD; 0.2 �g mL-1, 3 h for RPI inhibition; 2.0 �g mL-1, 3 h for total transcriptional inhibition). Late 2-cell-stage embryos were cultured to the late 4-cell stage with 0.2 �g mL-1 AD (long-term inhibition) to prevent EGA. Embryos were fixed at the late 4-cell stage and processed for RT-PCR (de novo synthesized rRNA), autoradiography (ARG, following culture with 3H-uridine for the last 20 min before fixation), TEM, FISH (probe-labeling rRNA and rDNA), silver staining of nucleolar proteins, and immunofluorescence for RPI. Control embryos displayed typical extranucleolar and nucleolar ARG labeling, fibrillo-granular nucleoli, and focal RPI localization signaling de novo rRNA synthesis in functional nucleoli, confirmed by RT-PCR. All nuclei showed large FISH clusters (rRNA and rDNA) that in 88% of the cases were co-localized with large foci of silver-stained nucleolar proteins. After RPI inhibition, only extranucleolar ARG labeling was detected and, instead of fibrillo-granular nucleoli, a segregated dense-fibrillar component and a granular component, but no fibrillar centers, were observed. RPI was dispersed in all nuclei, the number of nuclei presenting large FISH clusters decreased to 40%, and only 42% of nuclei showed nucleolar proteins localized to large foci. After total transcriptional inhibition and long-term inhibition, the nuclei did not display any ARG labeling and presented inactive nucleolus precursor bodies indicating lack of rRNA (RT-PCR) and total RNA synthesis. However, 40% of the nuclei in both groups presented large FISH clusters of rRNA. This rRNA is considered as partially processed residues of maternally inherited molecules, and their clustering is most likely independent of EGA. Inhibition of transcriptional activity at the time of EGA caused the dispersion of RPI (de novo synthesized) but did not influence the localization of silver-stained nucleolar proteins to large foci (41%). On the other hand, EGA inhibition caused the lack of RPI labeling and hampered the localization of nucleolar proteins to foci. Differences between these 2 groups could be due to the activation of RNA polymerase II before the 3-h AD treatment. In conclusion, RPI transcription and de novo protein synthesis are required for formation of functional nucleoli. However, the clustering of maternally inherited nucleolar transcripts is independent on transcriptional activity at the time of EGA. Failure in constituent RNA polymerase activation during EGA leads to pattern-specific changes in nucleologenesis, which may serve as a marker for early embryo quality.


2021 ◽  
Author(s):  
Maki Asami ◽  
Brian Y.H. Lam ◽  
Marcella K. Ma ◽  
Kara Rainbow ◽  
Stefanie Braun ◽  
...  

2014 ◽  
Vol 26 (1) ◽  
pp. 148
Author(s):  
C. S. Oliveira ◽  
N. Z. Saraiva ◽  
L. Z. Oliveira ◽  
R. V. Serapião ◽  
M. R. de Lima ◽  
...  

Embryonic genome activation is a crucial step in early embryo development, and is accompanied by a dramatic change in the epigenetic profile of blastomeres. Histone modifications related to euchromatin and heterochromatin can be important parameters to infer developmental competence, as they are affected by manipulation and environmental stress conditions. The aim of this study was to characterise permissive (H3k9ac) and repressive (H3k27me3) histone modifications during the embryonic genome activation cell cycle in bovine embryos, regarding correlation between those marks and variance among blastomeres. For that, bovine embryos were produced by IVF and cultured in SOF medium supplemented with 5 mg mL–1 of BSA and 2.5% FCS in 5% O2 in an air atmosphere for 5 days (70 h after IVF). The 8 to 16 cell embryos were fixed in 4% paraformaldehyde and submitted to H3k9ac and H3k27me3 immunofluorescence assay (mouse anti-H3K9ac monoclonal antibody, 1 : 200; Sigma; rabbit anti-H3k27me3 monoclonal antibody, 1 : 200; Upstate, Charlottesville, VA, USA). Nuclei were counterstained with Hoechst 33342. Images of each embryo were captured (AxioCam, Carl Zeiss, São Paulo, Brazil) and measured for nuclear fluorescence intensity in each blastomere using Adobe Photoshop CS3 (Adobe Systems, San Jose, CA, USA). Mean levels were compared using the Mann-Whitney test and variances were compared using F-test (SAS 9.1, SAS Institute Inc., Cary, NC, USA; P = 0.05). We evaluated 2 replicates and 12 embryos during the transition from the 8 to 16 cell stages, totaling 169 blastomeres. Global H3k27me3 levels varied accordingly to H3k9ac levels, as indicated by a high Pearson correlation coefficient (r = 0.913). Levels of each blastomere were normalized to the lowest level obtained within each embryo. Some embryos displayed a high variation between blastomeres, and, for further analysis, we divided the embryos into groups: group A for embryos that presented similar H3k9ac levels between blastomeres (8 embryos, 66%), and group B for embryos that exhibited higher heterogeneity between blastomeres (at least 2 blastomeres presenting a 2-fold increase compared to the lowest blastomere; 4 embryos, 33%). Mean H3k9ac and H3k27me3 normalized levels were lower for group A [H3k9ac: 1.35 ± 0.29 (A), 1.94 ± 1.02* (B); H3k27me3: 1.33 ± 0.24 (A), 1.99 ± 0.77 (B)], and group A displayed lower variance values (H3k9ac: 0.07 (A), 1.05* (B); H3k27me3: 0.06 (A), 0.60 (B)]. Within each embryo, blastomeres were sorted in ascending order for H3k9ac level (1 to 16), and compared between groups A and B. We detected that mean levels differed (P < 0.05) between groups from blastomere 9 to 16 for H3k9ac and 10 to 16 for H3k27me3. Therefore, in 8- to 16-cell stage embryos, the H3k27me3 repressive mark is highly correlated with the H3k9ac permissive mark. Also, our results describe the presence of 2 distinguishable populations of bovine embryos at this stage, considering their epigenetic status. One population presented similar levels of repressive and permissive marks among blastomeres, whereas the second one displayed a remarkable variation among their blastomeres. This observation should be further studied, as it might reflect distinct cleavage pattern embryos and blastomere competence. The authors acknowledge FAPESP, FAPERJ and CNPq for financial support.


2014 ◽  
Vol 26 (1) ◽  
pp. 152 ◽  
Author(s):  
V. Maillo ◽  
P. O'Gaora ◽  
J. P. Mehta ◽  
C. De Frutos ◽  
N. Forde ◽  
...  

Despite clear evidence of a two-way interaction between the developing conceptus and the uterine endometrium in early pregnancy, the evidence for reciprocal cross-talk during the transit of the embryo through the oviduct is less clear. The aims were (1) to characterise the transcriptome of the bovine oviduct at the initiation of embryonic genome activation (EGA), (2) to examine the effect, if any, of the presence of an embryo on the oviduct transcriptome, and (3) to compare gene expression in the ampulla and isthmus of the oviduct ipsilateral to the corpus luteum. The oestrous cycles of cross-bred beef heifers were synchronized and those recorded in standing oestrus were randomly allocated to control group, nonbred (n = 7), or AI group (n = 11). All heifers were slaughtered on Day 3 after oestrus. The oviducts from each animal were isolated, straightened, and cut in half (ampulla and isthmus). Each portion was flushed with 500 μL of PBS to confirm the presence of an oocyte/embryo and was then opened and scraped longitudinally to obtain epithelial cells. Cells were snap-frozen in liquid nitrogen for microarray analysis. All recovered oocytes and embryos were located in the isthmus of the oviduct ipsilateral to the corpus luteum. The recovery rate was 72.7% (8/11) and 83.3% (5/6) for pregnant and cyclic animals, respectively. The stage of the recovered embryos was as follows: 4-cell stage (n = 1), 8-cell stage (n = 5), and 8–16 cell stage (n = 2), whereas in the cyclic group all recovered structures were unfertilized oocytes. The cells of the isthmus from ipsilateral and contralateral oviducts from 5 cyclic and 5 pregnant animals (8-cell embryos) and the ipsilateral ampulla cells from the pregnant animals were used for microarray analysis (Affymetrix Bovine ST array, Affymetrix, Santa Clara, CA, USA). Array data were analysed using BioConductor packages in R and custom CDF files downloaded from MBNI. Preprocessing of raw data was performed with RMA, and differential expression was assessed by linear modelling implemented in the limma package. Genes displaying P < 0.05 after adjustment for multiple testing were considered differentially expressed. A total of 18 809 probe sets were assessed for differential expression. Comparison of pregnant and cyclic oviduct epithelium revealed no significantly altered genes. However, comparison of the isthmus and ampulla of the ipsilateral oviduct in pregnant animals revealed 4011 (P < 0.05) and 2327 (P < 0.01) differentially expressed genes. Some of the gene ontologies involved in biological processes included fatty acid metabolism, cell adhesion, cell morphogenesis, cellular developmental process, and reproduction. In conclusion, we have characterised the transcriptome of the bovine oviduct epithelium at the initiation of embryonic genome activation on Day 3 post-oestrus in pregnant and cyclic heifers. Although large differences in gene expression were observed between the isthmus and ampulla, data suggest that the presence of an 8-cell embryo had no effect on the transcriptome of the cells of the isthmus, although a local effect at the precise position of the embryo cannot be ruled out.


Reproduction ◽  
2010 ◽  
Vol 140 (2) ◽  
pp. 273-285 ◽  
Author(s):  
Irina Lagutina ◽  
Helena Fulka ◽  
Tiziana A L Brevini ◽  
Stefania Antonini ◽  
Dario Brunetti ◽  
...  

The best results of inter-species somatic cell nuclear transfer (iSCNT) in mammals were obtained using closely related species that can hybridise naturally. However, in the last years, many reports describing blastocyst development following iSCNT between species with distant taxonomical relations (inter-classes, inter-order and inter-family) have been published. This indicates that embryonic genome activation (EGA) in xeno-cytoplasm is possible, albeit very rarely. Using a bovine–pig (inter-family) iSCNT model, we studied the basic characteristics of EGA: expression and activity of RNA polymerase II (RNA Pol II), formation of nucleoli (as an indicator of RNA polymerase I (RNA Pol I) activity), expression of the key pluripotency gene NANOG and alteration of mitochondrial mass. In control embryos (obtained by IVF or iSCNT), EGA was characterised by RNA Pol II accumulation and massive production of poly-adenylated transcripts (detected with oligo dT probes) in blastomere nuclei, and formation of nucleoli as a result of RNA Pol I activity. Conversely, iSCNT embryos were characterised by the absence of accumulation and low activity of RNA Pol II and inability to form active mature nucleoli. Moreover, in iSCNT embryos, NANOG was not expressed, and mitochondria mass was significantly lower than in intra-species embryos. Finally, the complete developmental block at the 16–25-cell stage for pig–bovine iSCNT embryos and at the four-cell stage for bovine–pig iSCNT embryos strongly suggests that EGA is not taking place in iSCNT embryos. Thus, our experiments clearly demonstrate poor nucleus–cytoplasm compatibility between these animal species.


2014 ◽  
Vol 26 (1) ◽  
pp. 148
Author(s):  
Y. S. Bogliotti ◽  
L. B. Ferré ◽  
D. J. Humpal ◽  
P. J. Ross

During pre-implantation development, substantial epigenetic changes occur that are thought to play key roles in achieving embryonic genome activation and totipotency. Embryonic genome activation occurs at the 8- to 16-cell stage in cattle and, although it is a crucial step of development, the specific mechanisms involved are still poorly understood. The aim of this study was to determine whether 4 histone 3 marks associated with active genes are remodelled during oocyte and early embryo development in cattle. The dynamics of acetylation of lysine 27 (H3K27ac), di-methylation of lysine 79 (H3K79me2), and mono- and tri-methylation of lysine 4 (H3K4me1, H3K4me3) were assessed by immunofluorescence and confocal microscopy. Ovaries were obtained from an abattoir. Immature germinal vesicle stage oocytes were aspirated from small antral follicles and matured for 24 h to the metaphase II stage (MII). Embryos were produced by in vitro fertilization and collected at different stages of development: pronuclear [PN; 18 h post-fertilization (hpf)], 2-cell (30 hpf), 4-cell (44 hpf), 8-cell (56 hpf), 16-cell (72 hpf), morula (120 hpf), and blastocyst (180 hpf). Three to 4 biological replicates were done per antibody and a total of 197 oocytes per embryo were imaged (8 to 16 per stage/antibody). The images were analysed using Fiji (Schindelin et al. 2012 Nat. Methods 9, 676–682). The average nuclear intensity per oocyte per embryo was adjusted by the average of 2 cytoplasmic areas (background). An ANOVA mixed model was used for statistical analysis using SAS (SAS Institute Inc., Cary, NC, USA). The least squares means of the different stages were compared (within each antibody group) using a Tukey-Kramer adjustment and were considered to be significantly different at P < 0.05. The H3K79me2 marks showed a significant increase from germinal vesicle to MII, a change opposite that of H3K27ac, which experienced a significant decrease between these two stages. The H3K4me1/me3 marks showed no significant changes during oocyte maturation. All 3 methylation marks presented a significant reduction in nuclear intensity from MII to PN, indicating that these marks are actively removed right after fertilization. The opposite effect was observed for the acetylation mark, in which the levels increased significantly from MII to PN. The H3K4me1/me3 marks showed a gradual decrease in intensity levels from the 2-cell stage onward, reaching a minimum at the 16-cell per morula stages. The H3K79me2 levels were low from PN to 16-cell stage, at which point its intensity levels began to increase, reaching statistical significance at the blastocyst stage. The H3K27ac marks showed a slow decrease in intensity levels from the PN stage, achieving statistical significance as it dropped to a minimum at the 16-cell stage. These results show that the global levels of the assayed epigenetic marks undergo dynamic changes during oocyte maturation and embryo development, suggesting that their remodelling may be important for early development. The authors thank Alta Genetics for providing the semen.


2018 ◽  
Vol 30 (1) ◽  
pp. 239
Author(s):  
M. Nowak-Imialek ◽  
D. Herrmann ◽  
A. Frenzel ◽  
H. Niemann

The Oct4 gene is crucial for undisturbed early embryonic development and maintenance of pluripotency in the mouse. It is found in mouse pre-implantation embryos after embryonic genome activation. After gastrulation, expression is restricted to germ cells. Limited research has been performed on OCT4 expression in the domestic pig, which is a valuable large animal model in biomedicine. Previously, we generated Oct4-EGFP reporter pigs carrying the genomic sequence of the murine Oct4 gene fused to the EGFP cDNA (Nowak-Imialek et al. 2011 Stem Cells Dev. 20, 1563-1575, 10.1089/scd.2010.0399). In the present study, we used this animal model to analyse the expression profile of the murine Oct4-EGFP transgene in porcine oocytes, in vivo-derived embryos (4-cell embryos, 8- to 16-cell embryos, morulae, and blastocysts) and ovaries. We studied whether the murine Oct4-EGFP transgene mimics the expression pattern of the endogenous OCT4 protein in transgenic pigs. Immature oocytes were isolated from ovaries of Oct4-EGFP transgenic sows (n = 5) using slicing methods. For collection of porcine embryos, wild-type sows were inseminated with sperm from an Oct4-EGFP transgenic boar. Sows were sacrificed 3, 4, and 5 days after insemination, and embryos were recovered by flushing oviducts and uterus and analysed by confocal microscopy. Ovaries obtained from female animals (5–12 months) were enzymatically dissociated and analysed using flow cytometry. Immature oocytes (n = 19) showed a very low, diffuse EGFP signal in cytoplasm. Embryos up to the 4-cell stage (n = 45) did not show Oct4-EGFP transgene expression. For the first time, EGFP fluorescence was detected at the 8-cell stage (n = 29) and a strong EGFP signal was observed in 16-cell stages and morulae (n = 53). In blastocysts from Day 5 (n = 40) EGFP fluorescence was not restricted to the inner cell mass (ICM), but was also seen in the trophectoderm (TE). Expression of EGFP was not detected in ovarian cells (n = 12). Thereafter, we analysed the expression pattern of endogenous OCT4 protein by immunostaining in nontransgenic porcine oocytes and pre-implantation embryos. As in Oct4-EGFP transgenic embryos, no expression of OCT4 was observed in 4-cell embryos (n = 12). Nuclear staining first became visible at the 8-cell stage (n = 12), with a strong signal observed in 16-cell stages and morulae (n = 18). In blastocysts from Day 5 (n = 26), both ICM and TE cell nuclei showed expression of OCT4 protein. These results demonstrate that the Oct4-EGFP transgene expression pattern reproduces the endogenous OCT4 protein expression profile in porcine oocytes and pre-implantation embryos. The Oct4-EGFP transgene was first detected at the 8-cell stage, consistent with embryonic genome activation, which is initiated at the 4-cell stage. However, Oct4-EGFP expression was not detected in ovarian cells. This might be related to the very low expression pattern of the Oct4-EGFP transgene in primary oocytes. In summary, the Oct4-EGFP transgene in the pig provides a useful marker for monitoring pluripotency in pre-implantation embryos after embryonic genome activation. In ongoing experiments, we are analysing the expression profile of the Oct4-EGFP transgene and endogenous OCT4 protein in porcine pre-implantation embryos from Days 8 and 11.


2006 ◽  
Vol 18 (2) ◽  
pp. 134 ◽  
Author(s):  
I. Lagutina ◽  
D. Brunetti ◽  
G. Lazzari ◽  
C. Galli

Interspecies nuclear transfer (NT) is a very important tool for study of nuclear–cytoplasm interactions and somatic cell nucleus reprogramming. We constructed, by means of a zona-free method, NT embryos using bovine (Bo) or porcine (Po) oocytes matured in vitro and bovine fetal fibroblasts (BFF), pig adult fibroblasts (PAF), and pig fetal (PFF) green fluorescent protein (GFP)-positive fibroblasts. Constructs were fused by a double pulse of DC 1.2 kV/cm for 30 µs. At 3–4 h post-fusion, embryos with Bo were activated by 5 µM ionomycin for 4 min and incubated in 2 mM 6-DMAP in SOFaa for 4 h, whereas embryos with Po were activated by a double pulse of DC 1.2 kV/cm for 30 µs in the fusion medium with 1 mM Ca++ and incubated in SOFaa containing 5 µg/mL cytochalasin B in for 4 h. Embryos were cultured in SOFaa in 5% CO2, 5% O2 at 38.5°C. The NT embryo development and GFP expression (D7) were checked. Our results (Table 1) showed that the blastocyst rate of control bovine and pig embryos was 74% and from 20 to 44%, respectively. ‘Pig fibroblasts into Bo’ embryos were arrested at the 8–21-cell stage while ‘BFF into Po’ embryos were arrested at the 4-cell stage. About 84% of ‘PFF GFP+ into Bo’ NT embryos started to express GFP, but only 3.2% (3/95) of the embryos were able to progress through the 16-cell stage suggesting insufficient embryonic genome activation. Overall significantly more ‘Pig fibroblast into Bo’ embryos were able to progress through the 4-cell stage pig developmental block than normal pig NT embryos (57.8 ± 3.5% vs. 47.1 ± 1.3%; t-test, P = 0.02). This study shows that early embryo development is driven by recipient cytoplasm up to the stage when genome activation should occur. The arrest of interspecies NT embryos at the stage of embryonic genome activation suggests that this developmental step is impaired. Table 1. Interspecies NT embryo development This work was funded by grant ISS CS 11 and ESF.


Sign in / Sign up

Export Citation Format

Share Document