142 Isolation of the Quail Spermatogonia

2018 ◽  
Vol 30 (1) ◽  
pp. 211
Author(s):  
E. R. Mennibaeva ◽  
N. A. Volkova ◽  
E. K. Tomgorova ◽  
L. A. Volkova ◽  
V. A. Bagirov ◽  
...  

Spermatogonia are testicular stem cells, the precursors of male sex cells. They are target cells for introduction of recombinant DNA and suitable for creation of cryobanks to preserve biological materials. The aim of our research was to optimize the individual stages culturing quail spermatogonia. In an initial study, dynamics of change in the composition of spermatogenic cells in the seminiferous tubules were assessed histologically, at weekly intervals from 1 week to 1.5 months of age. Thereafter, spermatogonia were isolated from quail testes. Disaggregation of the testis tissue was carried out by consecutive enzymatic treatment in 0.25% trypsin and 0.1% collagenase solution. Purification of spermatogonia from other types of spermatogenic cells was conducted by separation of the cells by adhesion. The duration and conditions of cultivation of spermatogenic cells were selected experimentally. Cultivation of spermatogonia was performed on feeder layers, including quail primary Sertoli cells, STO cell line, and transplanted porcine Sertoli cells. Growth medium for culturing spermatogonia was DMEM HG medium supplemented with 5% FCS, 2 mM α-glutamine, MEM (10 μL mL−1), antibiotic (100×), insulin-transferrin-selenium (ITS, 10 μL mL−1), 2-mercaptoethanol (5 × 10−5 M), albumin (5 mg mL−1), epidermal growth factor (EGF, 20 ng mL−1), basic fibroblast growth factor (bFGF, 10 ng mL−1), and leukemia inhibitory factor (LIF, 2 ng mL−1). For identification of spermatogonia colonies, SSEA-1 antibodies were used. The maximum number of spermatogonia in seminiferous tubules of quail occurred at 3 weeks of age; there were mainly spermatogonia and Sertoli cells at this time. The percentage of spermatogonia from the total number of spermatogenic cells in the seminiferous tubule reached 76 ± 2%. In view of this, spermatogonia were isolated from the testes of 2-week-old quail. Spermatogenic cells were cultured for 24 h, after which the supernatant with unattached cells, mainly spermatogonia, was transferred to a new dish and cultured. Maximum homogeneity of the cell population was detected by dividing the cells by 3-fold transfer of the cell supernatant at an interval of 24 h; the proportion of spermatogonia in the suspension reached 88%. Quail Sertoli cells were the optimal feeder layer for cultivation of quail spermatogonia. Formation of spermatogonia colonies was observed on Day 5 to 7 of cultures, and their identity confirmed by immunohistochemical staining for SSEA-1. The study was supported by the Russian Science Foundation within Project no.16-16-04104.

2018 ◽  
Vol 30 (1) ◽  
pp. 211
Author(s):  
N. A. Volkova ◽  
A. N. Vetokh ◽  
I. P. Novgorodova ◽  
A. V. Dotsev ◽  
N. A. Zinovieva

Male gonads are valuable genetic material for creation of biomaterial cryobanks to preserve the genes of various animals, including poultry. Spermatogonia, which are stem cells of the testes, are of greatest interest. For effective selection of spermatogenic cells, including spermatogonia, it is necessary to know the specific features of spermatogenesis of the species of interest. In this regard, the aim of this study was to investigate the dynamics of spermatogenesis in guinea fowl. Histological examinations of guinea fowl testes (n = 90 birds) were done for 9 age categories, from 2 wk to 6 months. For each individual, at least 30 seminiferous tubules were examined. Seminiferous tubule diameters and numbers and types of spermatogenic cells (based on morphology) were determined. Overall, the histologic structure of guinea fowl testes was similar to that of mammals. Cell populations of the seminiferous tubules included Sertoli cells and generative cells, including spermatogonia, spermatocytes, spermatids, and sperm, at various stages of differentiation. Diameter of seminiferous tubules was (mean ± SEM) 36 ± 1, 58 ± 1, 64 ± 1, 65 ± 1, 110 ± 3, 178 ± 4, 233 ± 4, 274 ± 6, and 295 ± 5 µm at 2 wk, 1, 1.5, 2, 2.5, 3, 4, 5, and 6 months, respectively. Furthermore, at those ages, the number of spermatogenic cells per tubule was 18 ± 1, 20 ± 1, 29 ± 2, 30 ± 2, 68 ± 5, 114 ± 8, 186 ± 10, 400 ± 20, and 447 ± 24. Maximum percentage of spermatogonia was 72 ± 2% at 6 wk. Primary and secondary spermatocytes were first observed at 10 and 12 wk of age, respectively, whereas spermatids were first apparent at 4 months. Sperm were first identified at 5 months, with more present at 6 months. We concluded that the optimal age for retrieving testicular germ cells in guinea fowl was no later than 8 wk, as that represented the age when seminiferous tubules were dominated by spermatogonia. The study was supported by the Russian Science Foundation (Project no.16-16-04104).


2018 ◽  
Vol 30 (1) ◽  
pp. 241
Author(s):  
A. N. Vetokh ◽  
N. A. Volkova ◽  
T. O. Kotova ◽  
E. N. Antonova ◽  
A. V. Dotsev ◽  
...  

Spermatogonia are the precursors of male germ cells. They are a valuable genetic material for the production of transgenic poultry. This technology includes isolation of the spermatogonia from male donor’s testes, transformation, and transplantation of donor cells into the sterilized recipient’s testes. The transplanted spermatogonia subsequently differentiate into male sex cells (sperm). The aim of this study was to optimize the individual stages of donor spermatogonia transplantation into the recipient’s testes to increase the effectiveness of spermatogenesis recovery. In the first stage, the spermatogenesis in male chicken was examined to determine the optimal age for isolation of spermatogonia from testes. Histological examinations of male chicken testes (n = 80 birds) were done for 8 age categories, from 1 week to 3 months. It was found that under the age of 4 weeks, the cell population in the seminiferous tubules of male chickens was represented mainly by Sertoli cells and spermatogonia. Maximum percentage of spermatogonia was 69 ± 3% at 4 weeks. At the next stage, a culture of spermatogonia was obtained. Testes of 3-week-old male chickens were used. Separation of the spermatogonia from other types of cells was based on a differential adhesive capacity. The maximum homogeneity of the cell population was established by transfer (3 times) of the supernatant containing unattached cells after 24 h of cultivation into a new culture dish for further cultivation. The cell population is represented mainly by the spermatogonia (89 ± 3%). The lentiviral transduction (pHAGE vector, ZsGreen under CMV promotor) was used to transform the resulting culture of the spermatogonia. The efficiency of spermatogonia infection with lentiviral particles (TU/mL = 2.5 × 108) was 65 ± 2%. After transformation, spermatogonia were introduced into the testes of busulfan-sterilized recipients. The optimal concentration of busulfan treatment after series of experiments from 40 to 100 mg/kg was determined. The effective dose for the removal of own spermatogenic cells was revealed at a concentration of 80 mg/kg of live weight. With complete elimination of other types of spermatogenic cells, the number of Sertoli cells and spermatogonia in the testicle tubules decreased by 39 ± 2% and 98 ± 1%, respectively, compared with the control group. The efficiency of spermatogenesis recovery was assessed based on sperm analysis that was obtained from male recipients (n = 5 birds) 4 months after the introduction of donor cells using PCR. The presence of recombinant DNA (ZsGreen) in recipients’ sperm was shown. Thus, our results indicate the prospect of using spermatogonia as a genetic material for the production of transgenic poultry. Study was supported by the Russian Science Foundation (Project no.16-16-10059).


2017 ◽  
Vol 29 (8) ◽  
pp. 1635 ◽  
Author(s):  
A. Dance ◽  
J. Kastelic ◽  
J. Thundathil

Beef and dairy bull calves fed a low-nutrition diet during early life had decreased concentrations of circulating insulin-like growth factor I (IGF-I), delayed increases in testosterone, smaller testes and delayed puberty compared with those fed high-nutrition diets. Although IGF-1 has important roles in Sertoli cell function in rats and mice, this has not been well documented in bulls. The objectives of this study were to: (1) isolate Sertoli cells from bull calves at 8 weeks of age, (2) culture them in vitro and (3) determine the effects of IGF-I, FSH and a combination of both hormones on cell proliferation. For Sertoli cell isolation, minced testicular tissues were treated with collagenase followed by trypsin and hyaluronidase to digest seminiferous tubules and release Sertoli cells. In this study, Sertoli cells were successfully isolated from 8-week-old Holstein bull calves (n = 4) and these cells were cultured for up to 8 days. A combination of IGF-I and FSH increased proliferation (~18%) and therefore cell number (1.5-fold) of prepubertal bovine Sertoli cells in culture, providing clear evidence that IGF-I has a similar role in bovine Sertoli cells as reported in rodents.


2000 ◽  
Vol 74 (15) ◽  
pp. 6875-6884 ◽  
Author(s):  
Igor Dmitriev ◽  
Elena Kashentseva ◽  
Buck E. Rogers ◽  
Victor Krasnykh ◽  
David T. Curiel

ABSTRACT Human adenovirus (Ad) is extensively used for a variety of gene therapy applications. However, the utility of Ad vectors is limited due to the low efficiency of Ad-mediated gene transfer to target cells expressing marginal levels of the Ad fiber receptor. Therefore, the present generation of Ad vectors could potentially be improved by modification of Ad tropism to target the virus to specific organs and tissues. The fact that coxsackievirus and adenovirus receptor (CAR) does not play any role in virus internalization, but functions merely as the virus attachment site, suggests that the extracellular part of CAR might be utilized to block the receptor recognition site on the Ad fiber knob domain. We proposed to design bispecific fusion proteins formed by a recombinant soluble form of truncated CAR (sCAR) and a targeting ligand. In this study, we derived sCAR genetically fused with human epidermal growth factor (EGF) and investigated its ability to target Ad infection to the EGF receptor (EGFR) overexpressed on cancer cell lines. We have demonstrated that sCAR-EGF protein is capable of binding to Ad virions and directing them to EGFR, thereby achieving targeted delivery of reporter gene. These results show that sCAR-EGF protein possesses the ability to effectively retarget Ad via a non-CAR pathway, with enhancement of gene transfer efficiency.


Sign in / Sign up

Export Citation Format

Share Document