177 Increasing in vitro embryonic development through improved oocyte maturation in cattle oocytes

2019 ◽  
Vol 31 (1) ◽  
pp. 213
Author(s):  
J. Keim ◽  
Y. Liu ◽  
I. Polejaeva

In vitro maturation (IVM) is an important process in the in vitro production of embryos. It has been recently shown that 3 cytokines: fibroblast growth factor 2 (FGF2), leukemia inhibitory factor (LIF), and insulin-like growth factor 1 (IGF1) have increased the efficiency of IVM, blastocyst production, and in vivo development in pig (Yuan et al. 2017 Proc. Natl. Acad. Sci. USA 114, E5796-E5804). In vitro maturation in medium supplemented with cytokines doubled the blastocyst rate and quadrupled the litter size when transferred. It was observed that the addition of cytokines to IVM medium had an effect on the regulation of pMAPK1/3, cumulus cell expansion, and transzonal projections in cumulus-oocyte complexes (COC). This study was designed to assess the effect of these 3 cytokines on IVM in bovine oocytes and their consecutive development to blastocyst. Intracellular glutathione level (GSH), frequently used as an indicator of metaphase II (MII) oocyte quality, was also evaluated. The COC were retrieved from abattoir-derived ovaries and matured for 21h in either our standard maturation medium [TCM-199 (Gibco/Life Technologies, Grand Island, NY, USA), containing 10% fetal bovine serum, 0.5µg mL−1 FSH, 5µg mL−1 LH, and 100U mL−1 penicillin/streptomycin] or maturation medium supplemented with 20ng mL−1 human LIF, 20ng mL−1 human IGF1, and 40ng mL−1 human FGF2. After IVM, COC were placed in fertilization medium and incubated with frozen-thawed sperm for 20h. Cumulus cells were removed from fertilized COC and cultured in SOF culture medium at 38.5°C in 5% CO2/humidified air. Cleavage and blastocyst rates were assessed at 48h and Day 8 post-IVF, respectively. To assess GSH level, MII oocytes were incubated in 20 µM CellTracker Blue CMF2HC (Thermo Fisher Scientific, Waltham, MA, USA) and observed under blue fluorescent light. All statistical analysis was performed using one-way ANOVA and data are presented as mean±s.e.m. The MII rate, assessed by the presence of the first polar body, was significantly higher in the maturation medium supplemented with cytokines compared with the control medium (167/202; 82.4±2.02% v. 136/198; 68.8±1.1%; P<0.05, 4 replicates). For IVF, no statistical difference was found in the cleavage rate between oocytes matured in the medium supplemented with cytokines compared with control medium (351/473; 74.3±4.86% v. 358/573; 63.9±4.03%; P>0.05, 5 replicates), respectively. However, a significant increase in blastocyst rate was observed in the cytokine-containing medium (64/351; 17.7±2.06%) compared with the control group (42/358; 11.0±1.96%; P<0.05, 5 replicates). Furthermore, our preliminary data indicate an increase in GSH in MII oocytes matured in the cytokine-containing medium. In conclusion, the addition of FGF2, LIF, and IGF1 to maturation media improves bovine IVM efficiency and quality of the MII oocytes, leading to a greater blastocyst development rate. Supported by RFBR (18-29-07089) and UAES (1343).

2021 ◽  
Vol 10 (2) ◽  
pp. 46
Author(s):  
Sepvian Dewi Kurniawati ◽  
Suryanie Sarudji ◽  
Widjiati Widjiati

This study was aimed to determine the effect of urea in maturation medium on in vitro oocyte maturation rate. The medium used was TCM-199 added with Hepes, NaHCO3, Kanamycin 0.15 IU/mL, PMSG, 0.15 IU/mL hCG, and 10% FBS. Cumulus oocyte complexes (COCs) of cows derived from follicle aspiration were divided into three groups. In control group (P0), the COCs were matured in vitro in a maturation medium without urea addition, meanwhile in the P1 and P2 groups, the medium was added with urea 20 and 40 mg/dL, respectively. Each petri dish contained three drops of maturation medium (300 µl/drops) according to the groups. Microdrops were coated with mineral oil and then incubated in a 5% CO2 incubator, at 39 ˚C with maximum humidity. Aceto-orcein staining was conducted to evaluate the maturation of oocytes based on the achievement of metaphase II phase that is indicated by the presence of metaphase plate and/or first polar body. The result showed that the oocyte maturation rates of P0, P1, and P2 were 51.25, 52.43 (p >0.05), and 46.88 % (p <0.05) respectively. It could be concluded that the presence of urea at 40 mg/dL in maturation medium reduced the percentage of bovine oocyte maturation in vitro.


2021 ◽  
Vol 10 (3) ◽  
pp. e15710313074
Author(s):  
Denilsa Pires Fernandes ◽  
Fernanda Araujo dos Santos ◽  
Luã Barbalho de Macêdo ◽  
Roberta Gonçalves Izzo ◽  
Brenna de Sousa Barbosa ◽  
...  

The aim of this study was to evaluate the effect of three different incubation times on in vitro maturation of domestic cat oocytes. Thus, ovaries (n = 42) were submitted to slicing procedure and the oocytes recovered were classified; only good quality oocytes (Grade I and II) underwent in vitro maturation for three different periods (24 vs. 30 vs. 36 h) in supplemented TCM-99 medium. After, oocytes were evaluated for cumulus cell expansion and presence of the first polar body. After six replicates (7 ± 1,7 ovaries per replicate), a total of 334 viable oocytes were recovered. Differences (p <0.05) were observed regarding the percentage of oocytes presenting expansion of the cumulus cells, where higher values were observed in the group of oocytes incubated for 36 h (84.3%), when compared to 30 (73.4%) and 24 h (71.0%). Moreover, differences were also observed regarding the presence of the first polar body (24 h: 29.7%; 30 h: 58.2%; 36 h: 69.8%). We conclude that the incubation period influenced the maturation rates, indicating 36 h as the ideal period for the in vitro maturation of domestic cat oocytes in supplemented TCM-199 medium.


Author(s):  
Adek Amansyah

Objective: To evaluate the relationship between the number of LH receptor and the success of oocyte maturity in the process of in vitro maturation (IVM). Method: This experimental study was conducted in the Permata Hati Infertility Clinical Laboratory, Dr. Sardjito General Hospital, Yogyakarta, with the samples of 300 oocytes obtained through collecting immature cow’s oocytes from the abattoir and grouped the oocytes into 3 (three) groups based on the pattern of oocyte cumulus cells on the vesicle germinal stage 2 - 8 mm with three layers of cumulus cell. The sample of the cumulus cells from these three groups were taken and the LH receptor examination was done with immunohistochemistry. After that, the IVM process was performed to the three groups and its development for 24 hours was evaluated. Its maturation quality was evaluated with the emergence of the first polar body (1PB) and compared to the other groups and related to the number of LH receptor in the three groups. Result: The result of this study indicated that the oocyte cumulus cells showed a difference of function during IVM process. The maturity rate in this study showed that the number of LH receptor was related to the morphological pattern of oocyte cumulus cells with oocyte maturity. The maturity of the cumulus cells which 100% covered the oocyte was higher than that of the cumulus cells which > 50% and < 30% covered the oocytes, namely, 74% compared to 60% and 12%. The result of this study also showed that the average number of LH receptors in the three groups (A, B, and C) was 183.4, 78.8, and 24.0 respectively. A significant difference was found in the three groups (p < 0.0001). When related to IVM maturity, this difference showed that the bigger number of oocyte cumulus cells influenced the oocyte maturity. Conclusion: The number of LH receptor can be used as a prediction to determine the success of oocyte maturation in the process of in vitro maturation. [Indones J Obstet Gynecol 2013; 1-4:183-7] Keywords: IVM, LH receptor, oocyte cumulus cell


2006 ◽  
Vol 18 (2) ◽  
pp. 167
Author(s):  
C. Yamada ◽  
M. D. Goissis ◽  
H. V. A. Caetano ◽  
A. R. S. Coutinho ◽  
M. E. O. A. Assumpção ◽  
...  

The cryopreservation of bovine oocytes remains a challenge despite significant reported progress. Immature bovine oocytes have a complex structure and the conventional cryoprotectants (penetrating cryoprotectants, sugars, and macromolecules) appear to be not sufficient to preserve them efficiently during freezing. Studies on semen and fibroblast cryopreservation indicate that amino acids, particularly l-glutamine, protect enzymes during freezing and increase the post-thaw viability. Therefore, the amino acids may optimize oocyte cryopreservation when associated with conventional cryoprotectants. This work evaluated the effect of l-glutamine on cryopreservation of immature bovine oocytes after in vitro maturation. Oocytes with homogeneous cytoplasm and several cumulus cell layers from slaughterhouse ovaries were distributed randomly in three groups: non-vitrified control, vitrified control, and vitrified with l-glutamine. Oocytes from vitrified groups were exposed for 10 min to PBS + 10% FCS + 10% ethylene glycol (EG) + 0.25 m trehalose (T), and for 30 s to PBS + 10% FCS + 25% EG + 25% dimethylsulfoxide + 0.5 m T at room temperature, adding 80 mm l-glutamine for the third group. Oocytes were loaded into OPS and plunged in liquid nitrogen. For thawing, OPS were immersed in PBS + 10% FCS + 10% EG + 1 m T for three min. Oocytes werethen placed in PBS + 10% FCS + 0.5 m T and in PBS + 10% FCS, remaining three min in each solution. For in vitro maturation, oocytes were washed three times on holding medium (TCM-HEPES + FCS + pyruvate + gentamycin), washed three times in maturation medium (TCM-bicarbonate + FCS + pyruvate + gentamycin + hCG + FSH + estradiol), and cultured in microdrops (90 μL) of maturation medium covered with mineral oil at 38.5°C under 5% CO2 in air and high humidity for 24 h. Oocytes were denuded, fixed in paraformaldehyde and triton, stained with Hoechst 33342, and evaluated under epifluorescence microscopy. Oocytes at metaphase II were considered matured. The group vitrified with l-glutamine had a significantly higher maturation rate than the group vitrified without l-glutamine; however, both had significantly lower maturation rates than the non-vitrified control group. In conclusion, l-glutamine improved the viability of vitrified oocytes. Table 1. Oocyte maturation rates of non-vitrified control, vitrified control, and vitrified with glutamine groups This work was supported by FAPESP 03/08543-1.


Zygote ◽  
2012 ◽  
Vol 21 (3) ◽  
pp. 231-237 ◽  
Author(s):  
Guixue Feng ◽  
Deshun Shi ◽  
Shufang Yang ◽  
Xiaoli Wang

SummaryThe present study was undertaken to establish an effective method for in vitro maturation (IVM) of denuded oocytes (DOs) by simulating the ovarian three-dimensional status in vivo using buffalo ovarian tissues or cumulus cells, so as to provide a model for investigating the mechanisms of oocyte maturation. Buffalo cumulus–oocyte complexes from ovaries taken at slaughter were denuded by pipetting, and then allocated randomly into four groups for IVM by direct culture in maturation medium (M1, control group), co-culture with a monolayer of cumulus cells (M2), embedded in cumulus cell clumps (M3) and ovarian tissue (M4) for 24 h. The nuclear maturation of DOs was assessed by the extrusion of the first polar body and the cytoplasmic maturation was evaluated by subsequently developmental capacity after parthenogenetic activation. More DOs matured to MII (56.89%) and developed to blastocysts (25.75%) when they were matured in vitro with M3 in comparison with DOs matured in vitro with M1 (45.14 and 15.97%) and M4 (40.48 and 13.49%). Further detection of gap junctions by injecting Lucifer yellow directly into cytoplasm of matured DOs with adherent cumulus cells and scanning with confocal microscope showed that Lucifer yellow were found in nine out of 11 the adherent cumulus cells in M3, indicating that the gap junctions between oocytes and cumulus cells was reconstructed in vitro. These results indicate that co-culture of DOs embedded in cumulus cell clumps can improve their nuclear and cytoplasmic maturation of DOs, possibly through the reconstruction of gap junctions in vitro.


2021 ◽  
Vol 17 (1) ◽  
Author(s):  
Muhammad Joan Ailia ◽  
Yun-Kyong Jin ◽  
Hee-Kyoung Kim ◽  
Goo Jang

Abstract Background Murine is the most abundantly used as laboratory animal models. There has been a tremendous amount of research including; their evolution, growth, physiology, disease modeling as well as genomic mapping. Rats and mice are the most widely used among them. Although both rats and mice fall under the same category still both are different a lot too. As regarding in vitro maturation and development mouse studies are well established as compared to rats which still lies in the early phase of development. So, we tried to figure out rat oocytes in vitro maturation and their developmental potential by performing 3 experiments i.e. superovulation, in vitro Maturation as simple culture (COC’s only), and COC’s & cumulus cells co-culture, which later further developed using parthenogenetic activation after IVM. Female Sprague Dawley rat 3–4 week used for these studies, we hyper-stimulated their ovaries using PMSG and hCG 150 IU/kg each. After that, we collected ovaries via dissection and retrieved oocytes. We matured them in TCM 199 supplemented with FSH, Estrogen, EGF, and Pyruvate. After maturation, we activated them using two types of activators i.e. Ethanol 7%, Ionomycin. After that, we saw and compared their developmental potential in vitro. Results Oocytes matured in COC’s and Cumulus cell monolayer co-culture (59% ± 4*) showed significantly more even growth and extrusion of the first polar body as compared to the COC’s only culture (53.8 ± 7%*). While oocytes activated using Ionomycin showed more promising development until 8 cells/blastocyst level compared to ethanol 7%. Conclusion we concluded that COC’s and cumulus monolayer co-culture is better than COC’s only culture. Cumulus monolayer provides extra aid in the absorption of nutrients and supplements thus providing a better environment for oocytes growth. Also, we concluded that matured oocytes showed more developmental capacity after activation via ionomycin compared to ethanol.


2017 ◽  
Vol 4 (S) ◽  
pp. 148
Author(s):  
Nguyen Ba Tu ◽  
Bui Hong Thuy ◽  
Nguyen Van Thuan

In mammals, Biotin serves a coenzyme in the metabolism of glucose, amino acids, and fatty acids. Biotin deficiency causes decreased rates of cell proliferation, disfunction in germ cells and fetal development. This study was carried out to determine the influence of Biotin supplementation to invitro maturation medium on the development of porcine oocyte and embryos. Biotin (0.0, 1.0, 10.0, 100.0 mg/l, respectively) was added into the oocyte maturation medium, the quality of mature oocytes was evaluated after 42h culturing. The parthenogenetic diploid embryos were produced by using electro-activation system, the quality of embryos was noted at 1-4 cells stage. The results showed that, Biotin can enhance the formation of the first polar body at the concentration of 10 mg/l, it can also improve the activation efficiency of parthenogenetic diploid embryos at the preimplantation stage from 2-4 cells. Therefore, the supplementation of 10mg/l Biotin to the in-vitro maturation medium has a beneficial effect on the parthenogenetic diploid embryos development in the pig.


2006 ◽  
Vol 18 (2) ◽  
pp. 266
Author(s):  
T. Somfai ◽  
K. Kikuchi ◽  
J. Noguchi ◽  
H. Kaneko ◽  
K. Ohnuma ◽  
...  

Diploid parthenotes are usually obtained by the inhibition of second polar body (PB2) extrusion after activation of metaphase II (MII) oocytes. However, diploid embryos can be generated by the inhibition of the first polar body (PB1) extrusion as well, using cytochalasin B (CB) during in vitro maturation prior the activation procedure. A higher percentage of mouse embryos generated by the activation of MII oocytes and the inhibition of PB2 extrusion were proven to be homozygous than for parthenotes obtained by the latter method (Kubiak et al. 1991 Development 111, 763-769). The aim of the present study was to examine if such difference has any effect on the development of parthenogenetic embryos in vitro. Nuclear progression and in vitro embryonic development after parthenogenetic activation of porcine oocytes exposed to CB during in vitro maturation (IVM) was investigated in the present study. The tendency of nuclear maturation was similar in oocytes matured in the presence of 1 �g/mL CB (IVM-CB group) and control oocytes matured without CB after 37 h of IVM; at this time the frequency of oocytes that had reached/or passed through anaphase-I stage did not differ significantly (P < 0.05) between the IVM-CB and the control groups (61.3% and 69.9%, respectively), however, no polar body extrusion was observed in the IVM-CB group and the two lumps of homologue chromosomes remained in the oocyte and turned into two irregular sets of condensed chromosomes. By 41 h of IVM, the double sets of chromosomes re-united in 89.5% of IVM-CB oocytes and formed a single large metaphase plate, whereas 68.8% of the control oocytes had reached metaphase-II stage (MII) by this time. When IVM-CB oocytes were electrically (1.5 kV/cm for 100 �s) activated and subsequently cultured without CB, 39% of the oocytes extruded a polar body (PB) and 82.9% of them had a female pronucleus. When those oocytes with PB were cultured, the blastocyst rate of the cleaved embryos did not differ (P < 0.05) from those of the control that were stimulated at MII and subsequently treated with CB (43.3% and 48.2%, respectively). The number of blastomeres in Day 6 blastocysts was significantly higher (P < 0.05) in the IVM-CB derived embryos than in those in the control group (47.8 and 40.7, respectively); moreover, the ratio of dead blastomeres (dead cells : live cells) was higher (P < 0.05) in the control than in the IVM-CB blastocysts (0.047 and 0.031, respectively). A possible explanation for this result might be a lower frequency of homozygous genes in IVM-CB parthenotes, in which segregation of sister chromatids were promoted instead of segregation of homologous chromosomes to obtain diploid embryos. In such embryos the expression of recessive lethal, sublethal and subvital genes might have a lower probability. This work was supported by the Japanese-Hungarian bilateral scientific and technological cooperation (TET JAP-11/02).


Zygote ◽  
2004 ◽  
Vol 12 (4) ◽  
pp. 333-338 ◽  
Author(s):  
Hiroshi Iwayama ◽  
Shinichi Hochi ◽  
Megumi Kato ◽  
Masumi Hirabayashi ◽  
Masashige Kuwayama ◽  
...  

Germinal-vesicle-stage oocytes enclosed with compact cumulus cell layers (COCs) were recovered from adult or prepubertal minke whale ovaries, and were vitrified in a solution containing 15% ethylene glycol, 15% DMSO and 0.5 M sucrose using either a Cryotop or an open-pulled straw (OPS) as the cryodevice. The post-warm COCs with normal morphology were cultured for 40 h in a 390 mosmol in vitro maturation medium, and oocytes extruding the first polar body were considered to be matured. The proportion of morphologically normal COCs after vitrification and warming was higher when the COCs were cryopreserved by Cryotop (adult origin, 88.4%; prepubertal origin, 80.8%) compared with the OPS (adult origin, 67.7%; prepubertal origin, 64.2%). The oocyte maturation rate was higher in the adult/Cryotop group (29.1%) compared with those of the prepubertal/Cryotop group (14.4%), the adult/OPS group (14.3%) and the prepubertal/OPS group (10.6%). These results indicate that the Cryotop is a better device than the OPS for vitrification of immature oocytes from adult minke whales.


2006 ◽  
Vol 18 (2) ◽  
pp. 249 ◽  
Author(s):  
N. Maedomari ◽  
N. Kashiwazaki ◽  
M. Ozawa ◽  
A. Takizawa ◽  
J. Noguchi ◽  
...  

It is generally accepted that cumulus cells (CCs) support the nuclear maturation of immature oocytes in mammals. However, the precise mechanism of interaction between cumulus cells and oocytes has not been clarified. Furthermore, the role of cumulus cells in embryonic development has not been reported. In the present study, the effect of denuding cumulus cells from porcine oocytes on oocyte maturation, ertilization, and their subsequent development to the blastocyst stage was examined in vitro. In vitro maturation, fertilization, and culture were carried out as previously reported (Kikuchi et al. 2002 Biol. Reprod. 66, 1033-1041). Porcine cumulus-oocyte complexes (COCs) were collected; some of them were completely denuded of cumulus cells immediately after the collection (DO-0 group). The remaining intact COCs and the DO-0 oocytes were cultured for 24 h in the presence of dbcAMP and hormones. After the initial culture, some of the intact COCs were denuded either completely (DO-24 group) or partially (H-DO-24 group). Additionally, some of DO-24 oocytes were co-cultured with the cumulus cells removed at 0 h and pre-cultured for 24 h (DO-24 + CCs group). The denuded oocytes in each experimental group and intact COCs (control) were further cultured for total 46 h. The remaining oocytes with a first polar body were either examined for the levels of intracellular glutathione (GSH) or fertilized in vitro with frozen-thawed boar spermatozoa. The inseminated oocytes were cultured and examined for their fertilization status after 10 h and for their developmental competence after 6 days. Data were analyzed by ANOVA, followed by the Duncan's multiple range tests. The maturation rates of all denuded groups were significantly lower (P < 0.05; 34.3 to 45.0%) than that of the control group (64.5%). Intracellular GSH concentrations of all denuded groups were also significantly lower (P < 0.05; 4.03 to 7.00 pmol/oocyte) than that of the control group (9.60 pmol/oocyte); however, the GSH level of H-DO-24 oocytes was significantly higher (P < 0.05) than the GSH levels in the other denuded groups. Male pronuclear formation rates of completely denuded oocytes (DO-0, DO-24, and DO-24 + CCs groups) were significantly lower (P < 0.05; 41.4 to 59.3%) than those of the control (89.4%) and the H-DO-24 (80.0%) groups. The blastocyst rate of the control group was significantly higher (P < 0.05; 19.9%) than that of H-DO-24 group (11.6%), and these rates were significantly higher (P < 0.05) than those of the completely denuded groups (3.0 to 4.5%). The results suggest that the presence of cumulus cells during maturation culture improves nuclear maturation of oocytes and plays an important role in embryonic development to the blastocyst stage in vitro.


Sign in / Sign up

Export Citation Format

Share Document