Co-culture embedded in cumulus clumps promotes maturation of denuded oocytes and reconstructs gap junctions between oocytes and cumulus cells

Zygote ◽  
2012 ◽  
Vol 21 (3) ◽  
pp. 231-237 ◽  
Author(s):  
Guixue Feng ◽  
Deshun Shi ◽  
Shufang Yang ◽  
Xiaoli Wang

SummaryThe present study was undertaken to establish an effective method for in vitro maturation (IVM) of denuded oocytes (DOs) by simulating the ovarian three-dimensional status in vivo using buffalo ovarian tissues or cumulus cells, so as to provide a model for investigating the mechanisms of oocyte maturation. Buffalo cumulus–oocyte complexes from ovaries taken at slaughter were denuded by pipetting, and then allocated randomly into four groups for IVM by direct culture in maturation medium (M1, control group), co-culture with a monolayer of cumulus cells (M2), embedded in cumulus cell clumps (M3) and ovarian tissue (M4) for 24 h. The nuclear maturation of DOs was assessed by the extrusion of the first polar body and the cytoplasmic maturation was evaluated by subsequently developmental capacity after parthenogenetic activation. More DOs matured to MII (56.89%) and developed to blastocysts (25.75%) when they were matured in vitro with M3 in comparison with DOs matured in vitro with M1 (45.14 and 15.97%) and M4 (40.48 and 13.49%). Further detection of gap junctions by injecting Lucifer yellow directly into cytoplasm of matured DOs with adherent cumulus cells and scanning with confocal microscope showed that Lucifer yellow were found in nine out of 11 the adherent cumulus cells in M3, indicating that the gap junctions between oocytes and cumulus cells was reconstructed in vitro. These results indicate that co-culture of DOs embedded in cumulus cell clumps can improve their nuclear and cytoplasmic maturation of DOs, possibly through the reconstruction of gap junctions in vitro.

2006 ◽  
Vol 18 (2) ◽  
pp. 249 ◽  
Author(s):  
N. Maedomari ◽  
N. Kashiwazaki ◽  
M. Ozawa ◽  
A. Takizawa ◽  
J. Noguchi ◽  
...  

It is generally accepted that cumulus cells (CCs) support the nuclear maturation of immature oocytes in mammals. However, the precise mechanism of interaction between cumulus cells and oocytes has not been clarified. Furthermore, the role of cumulus cells in embryonic development has not been reported. In the present study, the effect of denuding cumulus cells from porcine oocytes on oocyte maturation, ertilization, and their subsequent development to the blastocyst stage was examined in vitro. In vitro maturation, fertilization, and culture were carried out as previously reported (Kikuchi et al. 2002 Biol. Reprod. 66, 1033-1041). Porcine cumulus-oocyte complexes (COCs) were collected; some of them were completely denuded of cumulus cells immediately after the collection (DO-0 group). The remaining intact COCs and the DO-0 oocytes were cultured for 24 h in the presence of dbcAMP and hormones. After the initial culture, some of the intact COCs were denuded either completely (DO-24 group) or partially (H-DO-24 group). Additionally, some of DO-24 oocytes were co-cultured with the cumulus cells removed at 0 h and pre-cultured for 24 h (DO-24 + CCs group). The denuded oocytes in each experimental group and intact COCs (control) were further cultured for total 46 h. The remaining oocytes with a first polar body were either examined for the levels of intracellular glutathione (GSH) or fertilized in vitro with frozen-thawed boar spermatozoa. The inseminated oocytes were cultured and examined for their fertilization status after 10 h and for their developmental competence after 6 days. Data were analyzed by ANOVA, followed by the Duncan's multiple range tests. The maturation rates of all denuded groups were significantly lower (P < 0.05; 34.3 to 45.0%) than that of the control group (64.5%). Intracellular GSH concentrations of all denuded groups were also significantly lower (P < 0.05; 4.03 to 7.00 pmol/oocyte) than that of the control group (9.60 pmol/oocyte); however, the GSH level of H-DO-24 oocytes was significantly higher (P < 0.05) than the GSH levels in the other denuded groups. Male pronuclear formation rates of completely denuded oocytes (DO-0, DO-24, and DO-24 + CCs groups) were significantly lower (P < 0.05; 41.4 to 59.3%) than those of the control (89.4%) and the H-DO-24 (80.0%) groups. The blastocyst rate of the control group was significantly higher (P < 0.05; 19.9%) than that of H-DO-24 group (11.6%), and these rates were significantly higher (P < 0.05) than those of the completely denuded groups (3.0 to 4.5%). The results suggest that the presence of cumulus cells during maturation culture improves nuclear maturation of oocytes and plays an important role in embryonic development to the blastocyst stage in vitro.


2021 ◽  
Vol 10 (3) ◽  
pp. e15710313074
Author(s):  
Denilsa Pires Fernandes ◽  
Fernanda Araujo dos Santos ◽  
Luã Barbalho de Macêdo ◽  
Roberta Gonçalves Izzo ◽  
Brenna de Sousa Barbosa ◽  
...  

The aim of this study was to evaluate the effect of three different incubation times on in vitro maturation of domestic cat oocytes. Thus, ovaries (n = 42) were submitted to slicing procedure and the oocytes recovered were classified; only good quality oocytes (Grade I and II) underwent in vitro maturation for three different periods (24 vs. 30 vs. 36 h) in supplemented TCM-99 medium. After, oocytes were evaluated for cumulus cell expansion and presence of the first polar body. After six replicates (7 ± 1,7 ovaries per replicate), a total of 334 viable oocytes were recovered. Differences (p <0.05) were observed regarding the percentage of oocytes presenting expansion of the cumulus cells, where higher values were observed in the group of oocytes incubated for 36 h (84.3%), when compared to 30 (73.4%) and 24 h (71.0%). Moreover, differences were also observed regarding the presence of the first polar body (24 h: 29.7%; 30 h: 58.2%; 36 h: 69.8%). We conclude that the incubation period influenced the maturation rates, indicating 36 h as the ideal period for the in vitro maturation of domestic cat oocytes in supplemented TCM-199 medium.


Author(s):  
Adek Amansyah

Objective: To evaluate the relationship between the number of LH receptor and the success of oocyte maturity in the process of in vitro maturation (IVM). Method: This experimental study was conducted in the Permata Hati Infertility Clinical Laboratory, Dr. Sardjito General Hospital, Yogyakarta, with the samples of 300 oocytes obtained through collecting immature cow’s oocytes from the abattoir and grouped the oocytes into 3 (three) groups based on the pattern of oocyte cumulus cells on the vesicle germinal stage 2 - 8 mm with three layers of cumulus cell. The sample of the cumulus cells from these three groups were taken and the LH receptor examination was done with immunohistochemistry. After that, the IVM process was performed to the three groups and its development for 24 hours was evaluated. Its maturation quality was evaluated with the emergence of the first polar body (1PB) and compared to the other groups and related to the number of LH receptor in the three groups. Result: The result of this study indicated that the oocyte cumulus cells showed a difference of function during IVM process. The maturity rate in this study showed that the number of LH receptor was related to the morphological pattern of oocyte cumulus cells with oocyte maturity. The maturity of the cumulus cells which 100% covered the oocyte was higher than that of the cumulus cells which > 50% and < 30% covered the oocytes, namely, 74% compared to 60% and 12%. The result of this study also showed that the average number of LH receptors in the three groups (A, B, and C) was 183.4, 78.8, and 24.0 respectively. A significant difference was found in the three groups (p < 0.0001). When related to IVM maturity, this difference showed that the bigger number of oocyte cumulus cells influenced the oocyte maturity. Conclusion: The number of LH receptor can be used as a prediction to determine the success of oocyte maturation in the process of in vitro maturation. [Indones J Obstet Gynecol 2013; 1-4:183-7] Keywords: IVM, LH receptor, oocyte cumulus cell


2019 ◽  
Vol 31 (1) ◽  
pp. 213
Author(s):  
J. Keim ◽  
Y. Liu ◽  
I. Polejaeva

In vitro maturation (IVM) is an important process in the in vitro production of embryos. It has been recently shown that 3 cytokines: fibroblast growth factor 2 (FGF2), leukemia inhibitory factor (LIF), and insulin-like growth factor 1 (IGF1) have increased the efficiency of IVM, blastocyst production, and in vivo development in pig (Yuan et al. 2017 Proc. Natl. Acad. Sci. USA 114, E5796-E5804). In vitro maturation in medium supplemented with cytokines doubled the blastocyst rate and quadrupled the litter size when transferred. It was observed that the addition of cytokines to IVM medium had an effect on the regulation of pMAPK1/3, cumulus cell expansion, and transzonal projections in cumulus-oocyte complexes (COC). This study was designed to assess the effect of these 3 cytokines on IVM in bovine oocytes and their consecutive development to blastocyst. Intracellular glutathione level (GSH), frequently used as an indicator of metaphase II (MII) oocyte quality, was also evaluated. The COC were retrieved from abattoir-derived ovaries and matured for 21h in either our standard maturation medium [TCM-199 (Gibco/Life Technologies, Grand Island, NY, USA), containing 10% fetal bovine serum, 0.5µg mL−1 FSH, 5µg mL−1 LH, and 100U mL−1 penicillin/streptomycin] or maturation medium supplemented with 20ng mL−1 human LIF, 20ng mL−1 human IGF1, and 40ng mL−1 human FGF2. After IVM, COC were placed in fertilization medium and incubated with frozen-thawed sperm for 20h. Cumulus cells were removed from fertilized COC and cultured in SOF culture medium at 38.5°C in 5% CO2/humidified air. Cleavage and blastocyst rates were assessed at 48h and Day 8 post-IVF, respectively. To assess GSH level, MII oocytes were incubated in 20 µM CellTracker Blue CMF2HC (Thermo Fisher Scientific, Waltham, MA, USA) and observed under blue fluorescent light. All statistical analysis was performed using one-way ANOVA and data are presented as mean±s.e.m. The MII rate, assessed by the presence of the first polar body, was significantly higher in the maturation medium supplemented with cytokines compared with the control medium (167/202; 82.4±2.02% v. 136/198; 68.8±1.1%; P&lt;0.05, 4 replicates). For IVF, no statistical difference was found in the cleavage rate between oocytes matured in the medium supplemented with cytokines compared with control medium (351/473; 74.3±4.86% v. 358/573; 63.9±4.03%; P&gt;0.05, 5 replicates), respectively. However, a significant increase in blastocyst rate was observed in the cytokine-containing medium (64/351; 17.7±2.06%) compared with the control group (42/358; 11.0±1.96%; P&lt;0.05, 5 replicates). Furthermore, our preliminary data indicate an increase in GSH in MII oocytes matured in the cytokine-containing medium. In conclusion, the addition of FGF2, LIF, and IGF1 to maturation media improves bovine IVM efficiency and quality of the MII oocytes, leading to a greater blastocyst development rate. Supported by RFBR (18-29-07089) and UAES (1343).


2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Xiao Liang ◽  
Xue Tong ◽  
Hui-lan Du ◽  
Ming He ◽  
Yu Zhang ◽  
...  

Background. Bushen Tiaojing Decoctions (BSTJ-II-D and BSTJ-III-D) are used to assist pregnancy in clinical practice. In this study, we explored the ability of sequential administration of BSTJ-II-D and BSTJ-III-D to promote cumulus cell (CC) expansion and its underlying mechanisms in controlled ovarian hyperstimulation (COH) mice. Methods. Kunming mice were randomly divided into three groups. The normal group was injected intraperitoneally with saline, and distilled water was administered orally by gavage. As the COH model, mice were injected with GnRHa, eCG, and hCG. Subsequently, the BSTJD group received BSTJ-II-D and BSTJ-III-D orally by gavage, while the control group received distilled water. We evaluated CC expansion and oocyte first polar body (PB1) extrusion under a stereomicroscope. Serum levels of follicle-stimulating hormone (FSH) were detected by radioimmunoassay. The expression of the CC expansion-related factors PTX3 and PTGS2 was detected by immunofluorescence, western blot, and quantitative real-time-polymerase chain reaction analyses (qRT-PCR). Expression of p-MAPK14, p-MAPK3/1, MAPK14, and MAPK3/1 was detected by western blot analysis. Results. Sequential administration of BSTJ-II-D and BSTJ-III-D promoted cumulus expansion and oocyte PB1 extrusion and upregulated PTX3 and PTGS2 expression at the mRNA and protein levels. Furthermore, the levels of p-MAPK14/MAPK14, p-MAPK3/1/MAPK3/1 proteins, and serum FSH in the BSTJD group were higher than those in the normal and control groups. Conclusions. Sequential administration of BSTJ-II-D and BSTJ-III-D promotes cumulus expansion and oocyte maturation in COH mice by increasing FSH expression and activating the MAPK14 and MAPK3/1 signalling pathways, thereby increasing expression of PTX3 and PTGS2.


Zygote ◽  
2014 ◽  
Vol 23 (3) ◽  
pp. 416-425 ◽  
Author(s):  
Yan Yun ◽  
Peng An ◽  
Jing Ning ◽  
Gui-Ming Zhao ◽  
Wen-Lin Yang ◽  
...  

SummaryOocyte-specific linker histone, H1foo, is localized on the oocyte chromosomes during the process of meiotic maturation, and is essential for mouse oocyte maturation. Bovine H1foo has been identified, and its expression profile throughout oocyte maturation and early embryo development has been established. However, it has not been confirmed if H1foo is indispensable during bovine oocyte maturation. Effective siRNAs against H1foo were screened in HeLa cells, and then siRNA was microinjected into bovine oocytes to down-regulate H1foo expression. H1foo overexpression was achieved via mRNA injection. Reverse transcription polymerase chain reaction (RT-PCR) results indicated that H1foo was up-regulated by 200% and down-regulated by 70%. Based on the first polar body extrusion (PB1E) rate, H1foo overexpression apparently promoted meiotic progression. The knockdown of H1foo significantly impaired bovine oocyte maturation compared with H1foo overexpression and control groups (H1foo overexpression = 88.7%, H1foo siRNA = 41.2%, control = 71.2%; P < 0.05). This decrease can be rescued by co-injection of a modified H1foo mRNA that has escaped from the siRNA target. However, the H1e (somatic linker histone) overexpression had no effect on PB1E rate when compared with the control group. Therefore we concluded that H1foo is essential for bovine oocyte maturation and its overexpression stimulates the process.


Zygote ◽  
2004 ◽  
Vol 12 (1) ◽  
pp. 75-80 ◽  
Author(s):  
Yue-Liang Zheng ◽  
Man-Xi Jiang ◽  
Yan-Ling Zhang ◽  
Qing-Yuan Sun ◽  
Da-Yuan Chen

This study assessed the effects of oocyte age, cumulus cells and injection methods on in vitro development of intracytoplasmic sperm injection (ICSI) rabbit embryos. Oocytes were recovered from female rabbits superovulated with PMSG and hCG, and epididymal sperm were collected from a fertile male rabbit. The oocyte was positioned with the first polar body at 12 o'clock position, and a microinjection needle containing a sperm was inserted into the oocyte at 3 o'clock. Oolemma breakage was achieved by aspirating ooplasm, and the aspirated ooplasm and sperm were re-injected into the oocyte. The injected oocytes were cultured in M199 medium containing 10% fetal calf serum at 38 °C with 5% CO2 in air. The results showed that oocytes injected at 1 h post-collection produced a higher (p<0.05) fertilization rate than those injected at 4 or 7 h post-collection. Blastocyst rate in the 1 h group was higher (p<0.05) than in the 7 h group. Denuded oocytes (group A) and oocytes with cumulus cells (group B) were injected, respectively. Rates of fertilization and development of ICSI embryos were not significantly different (p<0.05) between the two groups. Four ICSI methods were applied in this experiment. In methods 1 and 2, the needle tip was pushed across half the diameter of the oocyte, and oolemma breakage was achieved by either a single aspiration (method 1) or repeated aspiration and expulsion (method 2) of ooplasm. In methods 3 and 4, the needle tip was pushed to the oocyte periphery opposite the puncture site, and oolemma breakage was achieved by either a single aspiration (method 3) or repeated aspiration and expulsion (method 4) of ooplasm. Fertilization rate in method 2 was significantly higher (p<0.05) than in methods 1 and 3. Blastocyst rates were not significantly different (p<0.05) among methods 1, 3 and 4, but method 2 produced a higher (p<0.05) blastocyst rate than method 3.


2008 ◽  
Vol 20 (1) ◽  
pp. 118 ◽  
Author(s):  
M. C. Gómez ◽  
N. Kagawa ◽  
C. E. Pope ◽  
M. Kuwayama ◽  
S. P. Leibo ◽  
...  

The ability to cryopreserve female gametes efficiently holds immense economic and genetic implications. The purpose of the present project was to determine if domestic cat oocytes could be cryopreserved successfully by use of the Cryotop method. We evaluated (a) cleavage frequency after in vitro fertilization (IVF) v. intracytoplasmic sperm injection (ICSI) of in vivo- and in vitro-matured oocytes after vitrification, and (b) fetal development after transfer of resultant embryos into recipients. In vivo-matured cumulus–oocyte complexes (COCs) were recovered from gonadotropin-treated donors at 24 h after LH treatment, denuded of cumulus cells, and examined for the presence of the first polar body (PB). In vitro-matured COCs were obtained from ovaries donated by local clinics and placed into maturation medium for 24 h before cumulus cells were removed and PB status was determined. Oocytes were cryopreserved by the Cryotop method (Kuwayama et al. 2005 Reprod. Biomed. Online 11, 608–614) in a vitrification solution consisting of 15% DMSO, 15% ethylene glycol, and 18% sucrose. For IVF, oocytes were co-incubated with 1 � 106 motile spermatozoa mL–1 in droplets of modified Tyrode's medium in 5% CO2/air at 38�C (Pope et al. 2006 Theriogenology 66, 59–71). For ICSI, an immobilized spermatozoon was loaded into the injection pipette, which was then pushed through the zona pellucida into the ooplasm. After a minimal amount of ooplasm was aspirated into the pipette, the spermatozoon was carefully expelled, along with the aspirated ooplasm. After ICSI, or at 5 or 18 h post-insemination, in vivo- and in vitro-matured oocytes, respectively, were rinsed and placed in IVC-1 medium (Pope et al. 2006). As assessed by normal morphological appearance after liquefaction, the survival rate of both in vivo- and in vitro-matured oocytes was >90% (93–97%). For in vitro-matured oocytes, cleavage frequencies after IVF of control and vitrified oocytes were 73% (16/22) and 53% (30/57), respectively, as compared to 68% (19/28) after ICSI of vitrified oocytes (P > 0.05). For in vivo-matured oocytes, cleavage frequencies after IVF of control and vitrified oocytes were 55% (18/33) and 35% (6/17), respectively, compared to 50% (10/20) after ICSI of vitrified oocytes (P > 0.05). At 18–20 h after ICSI, 18 presumptive zygotes and four 2-cell embryos derived from vitrified in vitro-matured oocytes and 19 presumptive zygotes produced from seven in vivo-matured and 12 in vitro-matured vitrified oocytes were transferred by laparoscopy into the oviducts of two recipients at 24–26 h after oocyte retrieval. The two recipients were 9-month-old IVF/ET-derived females produced with X-sperm sorted by flow cytometry. At ultrasonography on Day 22, both recipients were pregnant, with three live fetuses observed in one recipient and one live fetus seen in the second recipient. On Day 63 and Day 66 of gestation, four live kittens were born, without assistance, to the two recipients. The one male and three female kittens weighed an average of 131 g. In summary, in vivo viability of zygotes/embryos produced by ICSI of cat oocytes vitrified by the Cryotop method was demonstrated by the birth of live kittens following transfer to recipients.


2010 ◽  
Vol 22 (1) ◽  
pp. 322
Author(s):  
D. D. Bücher ◽  
M. A. Castro ◽  
M. E. Silva ◽  
M. A. Berland ◽  
I. I. Concha ◽  
...  

Granulocyte-macrophage colony stimulating factor (GM-CSF) is a pleiotropic cytokine that stimulates proliferation, differentiation and function in different cells types. We have previously demonstrated (Bücher DD et al. 2008 Reprod. Dom. Anim. 43 (Suppl. 3), 146 abst.) that both subunits of GM-CSF receptor are expressed in granulosa cells from antral follicles in bovine ovaries. Also, we determined that the cytokine enhances glucose uptake through facilitative hexose transporters in granulosa cells in primary culture. The goals of the present study were to characterize the expression of GM-CSF receptor in cumulus cells and oocytes from bovine antral follicles and to determine its effects on in vitro-matured bovine COCs in a chemically defined medium. To determine the presence of a and |5 subunits of GM-CSF receptor, COCs were aspirated from follicles <8 mm in diameter, fixed, and submitted to immunocytochemistry. To study the effect of GM-CSF on in vitro maturation of oocytes, COCs (n =481) were cultured using serum-free medium (SOF) containing 0, 1, 10, and 100 ng mL-1 of human recombinant GM-CSF (R&D Systems, Inc., Minneapolis, MN, USA) for 22 h at 39°C, 5% CO2 in humidified air. Nuclear stage, cumulus expansion, cumulus cell number, and viability were analyzed after in vitro maturation. Cumulus expansion was assessed using the cumulus expansion index (CEI) (Fagbohun C and Down S 1990 Biol. Reprod. 42, 413-423). Nuclear stage was evaluated using aceto-orcein stain. To determine cumulus cell viability and number, COCs (n = 10-12 per group) were transferred into an Eppendorf tube and cumulus cells were removed by vortexing for 3 min, stained with trypan blue and counted with a hemocytometer. The study was conducted in 6 replicates. Data from cumulus expansion and cell number were analyzed by Kruskal-Wallis analysis. Data for nuclear stage and cell viability were analyzed by chi-square analysis and one way ANOVA, respectively. Both receptor subunits were present in cumulus cells and oocytes from COCs. COCs cultured in 10 and 100 ng mL-1 GM-CSF had CEI scores (0.8 and 1.22, respectively) greater (P < 0.01) than controls (0.2), but the proportion of COCs displaying second metaphase did not differ (P = 0.5) among treatment groups. GM-CSF at a concentration of 100 ng mL-1 increased (P < 0.01) cumulus cell viability by more than 20% compared to the control group. Similarly, GM-CSF at concentrations of 10 and 100 ng mL-1 increased (P < 0.05) cumulus cell number by more than 20% and 45%, respectively, from the control group. The use of a specific inhibitor of PI3 kinase (Ly294002; 10 and 100 μM) blocked the stimulatory effect of GM-CSF on cumulus expansion, cell viability, and cell number. In conclusion, the results of the study suggest a plausible modulator role of GM-CSF in the metabolism and function of cumulus cells and oocytes during in vitro maturation. Funding from Faculty of Veterinary Sciences, Universidad Austral de Chile, MECESUP AUS-0005, AUS-0601, and DID D-2006-24 and from Universidad Católica de Temuco, research grant 2007 DGI-CDA-04.


2007 ◽  
Vol 19 (1) ◽  
pp. 286
Author(s):  
C. G. Grupen ◽  
T. S. Hussein ◽  
S. J. Schulz ◽  
D. T. Armstrong

Supplementing medium with follicular fluid (FF) during in vitro maturation (IVM) enhances the developmental competence of porcine oocytes, indicating that factors present in FF are beneficial to cytoplasmic maturation. Previous findings suggest that porcine FF contains high levels of superoxide dismutase activity and exerts a beneficial effect on cytoplasmic maturation by protecting oocytes from oxidative stress (Tatemoto et al. 2004 Biol. Reprod. 71, 1150–1157). Since oxidative stress is a potent inducer of apoptosis, the aim of the present study was to examine the temporal effects of FF during IVM on cumulus cell apoptosis and oocyte developmental competence. Ovaries of prepubertal pigs were collected from a local abattoir and antral follicles, 3 to 7 mm in diameter, were aspirated. Cumulus–oocyte complexes (COCs) with at least 3 uniform layers of compact cumulus cells (CCs) were recovered, washed, and transferred to maturation medium (MM) with or without 25% FF. At 22 h of IVM, COCs from each group were washed and transferred to fresh MM with or without 25% FF, forming 4 groups: -FF/-FF, -FF/+FF, +FF/-FF, and +FF/+FF. Cohorts of COCs were TUNEL stained at 22 and 44 h of IVM using the In Situ Cell Death Detection kit (Roche Diagnostics, Castle Hill, NSW, Australia) according to the manufacturer&apos;s instructions, and apoptotic CCs were visualized using confocal microscopy. Oocytes denuded at 44 h, that had a polar body, were treated with ionomycin and 6-dimethylaminopurine to induce parthenogenetic development, and were cultured for 7 days in NCSU-23 medium at 38.5&deg;C in 5&percnt; O2, 5&percnt; CO2, and 90&percnt; N2. Data were subjected to ANOVA and Tukey&apos;s post-hoc test. At 22 h of IVM, the presence of FF reduced the proportion of apoptotic CCs in COCs (2.1&percnt; vs. 4.6&percnt;). COCs matured with FF from 22 to 44 h of IVM had much lower proportions of apoptotic CCs (&plus;FF/&plus;FF: 0.9&percnt;; &minus;FF/&plus;FF: 2.6&percnt;) compared with those matured without FF (&plus;FF/&minus;FF: 10.3&percnt;; &minus;FF/&minus;FF: 17.8&percnt;). The rate of maturation to the metaphase-II stage was greater when oocytes were matured with FF from 0 to 22 h of IVM (&minus;FF/&minus;FF: 68.6&percnt;; &minus;FF/&plus;FF: 72.8&percnt;; &plus;FF/&minus;FF: 89.2&percnt;; &plus;FF/&plus;FF: 86.2&percnt;). Maturation without FF for the entire IVM interval reduced the proportion of activated oocytes that formed blastocysts compared with the other groups (&minus;FF/&minus;FF: 25.1&percnt;; &minus;FF/&plus;FF: 44.6&percnt;; &plus;FF/&minus;FF: 46.6&percnt;; &plus;FF/&plus;FF: 47.3&percnt;). Despite a 4-fold difference in the proportion of apoptotic CCs between COCs of the &plus;FF/&minus;FF and &minus;FF/&plus;FF groups, exposure to FF for the first or second half of IVM was as beneficial to oocyte developmental competence as exposure to FF for the entire IVM interval. This suggests that the protective effect of FF in reducing oxidative stress on oocytes during IVM is distinct from the effect on oocyte developmental competence.


Sign in / Sign up

Export Citation Format

Share Document