Effect of seed treatment on the emergence of Cassia brewsteri and Lysiphyllum carronii seeds stored in soil

2007 ◽  
Vol 29 (2) ◽  
pp. 133
Author(s):  
S. M. Reichman ◽  
S. M. Bellairs ◽  
D. R. Mulligan

Dormancy-breaking treatments are applied to seeds of many Australian species used for mine-site restoration in arid and semi-arid regions of Australia. Once seeds are sown, several months may pass before a rain event sufficient for germination. Therefore, it is important that treated seeds are able to survive in soil until conditions are hospitable for germination and growth. However, little is known about the effects of seed dormancy-breaking treatments on the longevity of seeds in soil. Two species that are potential candidates for use in mine site restoration programs in Queensland were trialed viz., Cassia brewsteri (F.Muell.) Benth and Lysiphyllum carronii (F.Muell.) Pedley. Untreated, boiled and acid treated seeds of the two species were sown in soil in a glasshouse. Seeds were watered immediately or kept dry for one or three months before watering and emergence was assessed. When applied to seeds incubated on filter paper in a germination cabinet, boiling and acid treatments were effective methods of breaking dormancy and increasing germination for both C. brewsteri and L. carronii seeds. However, in soil, seedling emergence from boiled seeds was the same or less than that of untreated seeds. Storage time in soil before watering had little effect on seedling emergence in the glasshouse, suggesting that most decreases in emergence compared with laboratory germination occurred after the input of water to the system. Treatments that promote germination in the laboratory can reduce seedling emergence in soil. Thus, treated seeds should be tested for survival in soil before use in mine-site restoration programs.

2021 ◽  
Vol 43 ◽  
Author(s):  
Rayssa Fernanda dos Santos ◽  
Henrique Fabrício Placido ◽  
Leonardo Lemes Bosche ◽  
Hugo Zeni Neto ◽  
Fernando Augusto Henning ◽  
...  

Abstract: This work evaluated the efficiency of accelerated aging test to determine the physiological potential in treated soybean seeds with fungicides and insecticides, in addition to analyzing the concordance between the results obtained by different accelerated aging methods with the actual results of the physiological quality in seeds after the storage. The study was divided into two experiments, both with entirely randomized delineation, with four replications. In the first experiment, seed germination was evaluated after imposing some treatments that were arranged in a 3 x 2 x 3 factorial scheme: seed treatment (imidacloprid + thiodicarb; fipronil + thiophanate methyl + pyraclostrobin; no treatment); vigor levels (high; low); and accelerated aging (traditional; saturated NaCl solution; no aging). In the second experiment, seedling emergence was evaluated after applying some treatments that were arranged in a 3 x 2 x 2 factorial scheme: seed treatment (imidacloprid + thiodicarb; fipronil + thiophanate methyl + pyraclostrobin; no treatment); vigor levels (high; low); storage time (0 and 135 days). The accelerated aging methods were efficient to determine the physiological potential of the seeds, in which, the NaCl method presented better results. The physiological potential of soybean seeds decreased throughout storage and the application of chemicals in seed treatment impaired the germination and emergence percentages, regardless of the active ingredient used. The accelerated aging method with NaCl presents greater agreement with the actual storage results.


2003 ◽  
Vol 83 (4) ◽  
pp. 729-735 ◽  
Author(s):  
M. A. Matus-Cádiz ◽  
P. Hucl

An effective dormancy-breaking method may be of interest to wheat (Triticum aestivum L.) breeders selecting for increased seed dormancy prior to advancing their populations in greenhouse grow-outs. The objective of this study was to identify an effective pre-treatment for breaking dormancy in wheat that did not result in seedling etiolation. In 2000, eight dormant (W98616, line 211, EMDR-4, EMDR-9, EMDR-14, RL4137, Columbus, and AC Domain) and one nondormant line (Roblin) were grown at two locations in Saskatchewan. Seeds were: (i) stored for zero to 21 wks at 24°C before incubating at 20°C for 7 d; (ii) incubated at 5, 10, 15, 20, and 25°C for 14 d; and (iii) treated with gibberellic acid (GA3) (0.0006 and 0.0014 M), potassium nitrate (KNO3) (0.01 and 0.02 M), chilling, heating, chilling with 0.01 M KNO3, and heating with 0.01 M KNO3 before incubating at 10°C for 14 d. Seedling growth was observed in a duplicated growth chamber experiment. Seedling length, first inter-node length, and biomass yield data were collected from plants grown from seeds treated with four effective pretreatments. Data were subjected to an ANOVA. Six to 18 weeks of storage at 24°C were required to break the dormancy (≥ 95% germination) in dormant genotypes. Incubation at 10°C was the most effective temperature for promoting germination in dormant seeds after 10d of testing. Four pre-treatments including 0.0006 M GA3, 0.0014 M GA3, chilling with 0.01 M KNO3, and heating with 0.01 M KNO3 led to ≥ 95% germination within 10 d of testing. Only GA3 treatments were associated with etiolated seedling growth. Heating with 0.01 M KNO3 or chilling with 0.01 M KNO3, applied before incubating at 10°C in darkness, may be of interest to breeders selecting for increased dormancy before advancing breeding populations in greenhouse grow-outs. Key words: Triticum, dormancy, nitrate, chilling, heating, etiolated seedling


2019 ◽  
Vol 41 (1) ◽  
pp. 33
Author(s):  
Mounir Louhaichi ◽  
Sawsan Hassan ◽  
Ali Mekki Missaoui ◽  
Serkan Ates ◽  
Steven L. Petersen ◽  
...  

Direct seeding techniques often result in unsatisfactory outcomes in rangeland rehabilitation, primarily because of low seedling emergence and poor establishment. Seed processing techniques aimed at improving seedling emergence have gained interest by pasture managers. The purpose of this study was to investigate the combined effects of bracteole removal and seeding rate on seedling emergence in seven halophytic species: Atriplex halimus, A. canescens, A. leucoclada, A. nummularia, A. lentiformis, Salsola vermiculata and Haloxylon aphyllum under semi-arid conditions in Tel Hadya (Syria). Each of these species was evaluated for seedling emergence under two seed treatments (bracteoles removed and non-removed bracteoles) with three seeding rates (10, 30 and 60 seeds per pot), in a completely randomised block design. The results showed a positive effect of seed treatment on seedling emergence for all studied species. The native A. halimus had the highest emergence percentages whereas the introduced A. mummularia, had the lowest. However, there were no significant effects of seeding rates on seedling emergence. These results showed that bracteole removal could improve germination and seedling emergence, and potentially increase the rate of establishment of the species studied. Therefore, when implementing rangeland rehabilitation projects, bracteole removal needs to be considered. The native S. vermiculata should be recommended for direct seeding in the West Asia and North Africa region given its high seedling emergence, known high palatability, nutritive value, and high auto-regeneration performance.


2009 ◽  
Vol 19 (2) ◽  
pp. 115-123 ◽  
Author(s):  
Filip Vandelook ◽  
Nele Bolle ◽  
Jozef A. Van Assche

AbstractA low-temperature requirement for dormancy break has been observed frequently in temperate-climate Apiaceae species, resulting in spring emergence of seedlings. A series of experiments was performed to identify dormancy-breaking requirements of Aegopodium podagraria, a nitrophilous perennial growing mainly in mildly shaded places. In natural conditions, the embryos in seeds of A. podagraria grow in early winter. Seedlings were first observed in early spring and seedling emergence peaked in March and April. Experiments using temperature-controlled incubators revealed that embryos in seeds of A. podagraria grow only at low temperatures (5°C), irrespective of a pretreatment at higher temperatures. Seeds did not germinate immediately after embryo growth was completed, instead an additional cold stratification period was required to break dormancy completely. Once dormancy was broken, seeds germinated at a range of temperatures. Addition of gibberellic acid (GA3) had a positive effect on embryo growth in seeds incubated at 10°C and at 23°C, but it did not promote germination. Since seeds of A. podagraria have a low-temperature requirement for embryo growth and require an additional chilling period after completion of embryo growth, they exhibit characteristics of deep complex morphophysiological dormancy.


Botany ◽  
2017 ◽  
Vol 95 (1) ◽  
pp. 73-88 ◽  
Author(s):  
Vigdis Vandvik ◽  
Reidar Elven ◽  
Joachim Töpper

Environmental cueing that restricts seed germination to times and places where mortality risk is relatively low may have considerable selective advantage. The predictive power of lab germination responses for field regeneration behaviour is rarely tested. We screened 11 alpine grassland forbs for germination behaviour predictive of microsite and seasonal selectivity, and seed carry-over across years. The predictions were tested in a field experiment. Germination in the lab ranged from 0.05% to 67.9%, and was affected by light (5 species), temperature (6 species), fluctuating temperatures (4 species), moist chilling prior to germination (cold-stratification) (6 species), and dormancy-breaking by means of gibberellic acid (8 species). Seedling emergence in the field varied from 0.1% to 14.1%, and increased in low-competition microsites (bare-ground gaps and cut vegetation; 7 species), and showed seasonal timing (1 species in autumn and 1 species in spring), and seed carry-over across years (7 species). Lab germination responses successfully predicted microsite selectivity in the field and to some extent seed carry-over across years but not seasonal timing of germination. Gap-detecting species were generally small-seeded, low-growing, and found in unproductive habitats. Larger-seeded species germinated in all of the microsites but experienced increased mortality in high-competition microsites. Seed carry-over across years was lower for alpine specialists than for more widely-distributed species.


Author(s):  
Milan Borišev ◽  
Slobodanka Pajević ◽  
Nataša Nikolić ◽  
Andrej Pilipović ◽  
Danijela Arsenov ◽  
...  
Keyword(s):  

Forests ◽  
2019 ◽  
Vol 10 (4) ◽  
pp. 319
Author(s):  
Yuhan Tang ◽  
Keliang Zhang ◽  
Yin Zhang ◽  
Jun Tao

Sorbus alnifolia (Siebold & Zucc.) K.Koch (Rosaceae) is an economically important tree in the temperate forests of Eastern China. In recent decades, ever-increasing use and modification of forestlands have resulted in major degeneration of the natural habitat of S. alnifolia. Moreover, S. alnifolia seeds germinate in a complicated way, leading to a high cost of propagation. The current study aimed to determine the requirements for breaking seed dormancy and for germination as well as to characterize the type of seed dormancy present in this species. Moreover, the roles of temperature, cold/warm stratification, and gibberellic acid (GA3) in breaking dormancy were tested combined with a study of the soil seed bank. The results showed that intact seeds of S. alnifolia were dormant, requiring 150 days of cold stratification to achieve the maximum germination percentage at 5/15 °C. Exposure of the seeds to ranges of temperatures at 15/25 °C and 20/30 °C resulted in secondary dormancy. Scarifying seed coat and partial removal of the cotyledon promoted germination. Compared with long-term cold stratification, one month of warm stratification plus cold stratification was superior in breaking dormancy. Application of GA3 did not break the dormancy during two months of incubation. Seeds of S. alnifolia formed a transient seed bank. The viability of freshly matured S. alnifolia seeds was 87.65% ± 11.67%, but this declined to 38.25% after 6-months of storage at room temperature. Seeds of S. alnifolia have a deep physiological dormancy; cold stratification will be useful in propagating this species. The long chilling requirements of S. alnifolia seeds would avoid seedling death in winter.


2018 ◽  
Vol 36 ◽  
Author(s):  
M. REZVANI ◽  
S.A. SADATIAN ◽  
H. NIKKHAHKOUCHAKSARAEI

ABSTRACT: Our knowledge about seed dormancy breaking and environmental factors affecting seed germination of greater bur-parsley (Turgenia latifolia) is restricted. This study has addressed some seed dormancy breaking techniques, including different concentrations of gibberellic acid (GA3) and potassium nitrate (KNO3), leaching duration, physical scarification as well as some environmental factors effective on seed germination such as salt and drought stresses, pH and seed planting depth. Seed germination was promoted with lower concentrations of KNO3 (0.01 to 0.02 g L-1), while higher concentrations reduced germination percentage. Seed dormancy was declined by low concentrations of GA3 up to 100 ppm. Seeds of greater bur-parsley germinated in a range of pH from 3 to 7. With enhancement of drought and salt stresses, seed germination decreased. Also, there was no seed germination in a high level of stresses. Seedling emergence reduced as planting depth increased. Use of GA3, KNO3, leaching and physical scarification had a positive effect on seed dormancy breaking of greater bur-parsley. The information from the study increases our knowledge about seed dormancy breaking techniques, response of germination to drought and salt stresses and also determination of distribution regions of greater bur-parsley in the future.


Sign in / Sign up

Export Citation Format

Share Document