Studies on the Mitchell Grass Association in South-Western Queensland. 3. Pasture and Wool Production Under Different Rates of Stocking and Continuous or Rotational Grazing.

1993 ◽  
Vol 15 (2) ◽  
pp. 302 ◽  
Author(s):  
R Roe ◽  
GH Allen

Pasture productivity and wool production on the Warrego Mitchell grass (Astrebla spp.) rangeland in south-westem Queensland were studied over a period of 13 years under continuous or rotational grazing, each at three stocking rates. The stocking rates were one sheep to three, two or one hectares and the rotational grazing was a six- monthly system of summer or winter grazing. The grazing treatments were applied over two five- year terms with a nil-grazing period at the conclusion of each. The latter periods provided a means of measuring the cumulative effects of the grazing treatments. Drought conditions prevailed during the first term so that supplementary feeding was necessary, but the second experienced above average rainfall. Quarterly measurements were made of the pasture dry matter on offer and its botanical and chemical composition. Monthly sheep liveweights, annual wool production and sheep size development in each term were also measured and monetary returns from wool calculated. Rainfall had a major influence on the results recorded and tended to nullify the effects of grazing treatments. Its unpredictability precludes the reliable use of complex techniques in management planning. The overall results suggested that the optimum grazing management of this Mitchell grass rangeland would be continuous grazing at a stocking rate of one sheep to two hectares. Supplementary feeding during drought would be obligatory and should be budgeted for in long-term planning. There was a 50% higher monetary return from this grazing treatment than from the lighter stocking rate and pasture stability (maintenance of Astrebla spp.) was sustained. Pasture stability was adversely affected by the heavier stocking rate. There was no srlstained advantage from rotational grazing compared with continuous grazing.

1963 ◽  
Vol 61 (2) ◽  
pp. 147-166 ◽  
Author(s):  
C. P. McMeekan ◽  
M. J. Walshe

1. A large-scale grazing management study comparing rotational grazing and continuous grazing with dairy cows at two stocking rates over four complete production seasons is described.2. The four treatments were: (i) controlled grazing, light stocking rate; (ii) controlled grazing, heavy stocking rate; (iii) uncontrolled grazing, light stocking rate; (iv) uncontrolled grazing, heavy stocking rate.Each treatment involved 40 cows for a first 2-year phase and 42 cows for the following 2 years. Each herd had a normal age distribution pattern and seven 2-year-old first lactation heifers (17% of total herd) were introduced each year to maintain this pattern.3. Stocking rate was the more important factor affecting the efficiency of pasture utilization as measured by per acre output of milk and butterfat. In general, high stocking was associated with higher outputs per acre despite lower yields per animal.4. Grazing method was of less importance. In general, controlled rotational grazing was superior to uncontrolled continuous grazing, both per animal and per acre, but the average influence even of these extremes of management was only half that of stocking rate.5. Significant interactions between stocking rate and grazing method existed. Under continuous grazing a point was reached where production per acre declined to the vanishing point with increased stocking rate due to excessive depression of per cow yield: this point was not reached under rotational grazing at the same high stocking levels.6. The results suggest that optimum stocking rate under rotational grazing occurs at a level some 5–10% higher than under continuous grazing. A depression of 10–12% in per cow yield, compared with more lenient grazing, corresponds with optimum stocking level irrespective of the grazing system. This estimate is suggested as a guide line in applying the principles involved.


1995 ◽  
Vol 35 (8) ◽  
pp. 1093 ◽  
Author(s):  
PT Doyle ◽  
TW Plaisted ◽  
RA Love

The effects of different supplementary feeding practices in summer-autumn and management strategies on green pasture on liveweight change, wool growth rate, annual wool production and wool characteristics of young Merino wethers were examined at 2 farms. The grain feeding treatments were lupins (L) or lupins and oats (LO) fed in amounts that were adjusted to try and maintain liveweight, or lupins and oats (LOG) fed at a higher rate. The objectives of liveweight maintenance or gain were not always achieved, but liveweight patterns differed between LOG compared with L or LO during summer-autumn. The sheep used at farm 1 were aged 4.5 months and liveweight 32 kg at the start of the experiment, while those at farm 2 were 6.5 months and liveweight 39 kg. The stocking rate in summer-autumn was 8 wethers/ha at both farms. During supplementation, sheep on LOG had a higher (P<0.05) liveweight change compared with those on L or LO (farm 1, 15 v. -8 g/sheep. day; farm 2, -35 v. -51 g/sheep. day) and clean wool growth rates (farm 1, 7.1 v. 6.4 g/sheep. day; farm 2, 5.1 v. 4.8 g/sheep.day). The sheep on LOG grew broader (P<0.05) wool than those on L or LO (farm 1, 19.0 v. 18.5 �m; farm 2, 21.7 v. 20.8 �m), and at farm 1 length was also greater (P<0.05) (114 v. 111 mm), while at farm 2 staple strength was greater (P<0.01) (22.9 v. 16.4 N/ktex). There were no significant differences in annual clean wool production. There were positive (P<0.01) relationships between staple strength and liveweight change to the time of minimum liveweight in summer-autumn. After green pasture on offer reached 500 kg DM/ha in autumn, different liveweight change patterns were achieved in 2 groups (LS, lower stocking rates; HS, higher stocking rates) of sheep at each farm by adjusting stocking rates. Within a farm, the LS and HS groups were comprised of equal numbers of sheep from each replicate of the supplementary feeding treatments. There were differences (P<0.05 to 0.01) in liveweight change between LS and HS (farm 1, 93 v. 72 g/day; farm 2, 127 v. 60 g/day), the differences being more pronounced at farm 2. The differential stocking rates at farm 2 resulted in differences in clean wool growth rates (P<0.01), in clean wool production (4.22 v. 4.53 kg, P<0.05), and fibre diameter (20.8 v. 21.4 �m, P<0.01), but there were no significant effects on staple length or strength. There were no significant effects of the supplementary feeding treatments imposed in summer-autumn on the responses to the stocking rate treatments on green pasture.


1974 ◽  
Vol 82 (3) ◽  
pp. 497-506 ◽  
Author(s):  
G. N. Harrington ◽  
D. Pratchett

SUMMARYA series of stocking rate trials running for differing periods between 1961 and 1972 are summarized. Weight gains of steers grazed at 2·4, 1·2, 0·8 and 0·6 ha/300 kg animal on Cymbopogon/Hyparrhenia/Themeda pasture are detailed. Subtreatments included continuous and rotational grazing and the removal of the unpalatable Cymbopogon afronardus.Weight gains at 0·6 ha/animal were higher than a linear relationship between stocking rate expressed as animals/ha and weight gain would predict. This was ascribed to the dominance of the high quality grass Brachiaria decumbens at this grazing pressure.Rotational grazing was less productive than continuous grazing, because C. afronardus increased more rapidly under this management, but there was less soil erosion. Removal of C. afronardus increased cattle growth rates and gains/ha by over 40% at 0·6 ha/animal. The cost of clearing this weed should be recovered in 2 years from a commercial cattle ranch. A grazing pressure of ca. 0·8 ha/animal is expected to maximize long-term profits on C. afronardus-free Ankole rangeland and in 3 years in this trial average gains of 0·29 kg/day/animal were achieved. This was an annual production level of 131 kg/ha/annum, which compared with 53 kg/ha at 2·4 ha/animal and 143 kg/ha at 0·6 ha/animal.


1994 ◽  
Vol 45 (2) ◽  
pp. 367 ◽  
Author(s):  
AN Thompson ◽  
PT Doyle ◽  
M Grimm

Two experiments examined the effects of different stocking rates in spring, and hence the availability of annual pastures, on changes in liveweight and wool production in Merino wethers (Experiments 1 and 2 respectively: age 5 and 2+-year-old; liveweight 63.8 � 0.64 (s.e.m.) kg and 43.8 � 0.34 kg; condition score 3.9% 0.14 and 3.l � 0-08). In Experiment 1, stocking rates were 8, 16, 24, 32 and 40 sheep/ha from 8 August, 1989 f9r 122 days; Experiment 2 involved an additional stocking rate of 48 sheep/ha from 23 August, 1990 for 98 days. Feed on offer (FOO kg DM/ha) declined (P < 0.01) linearly as stocking rate increased. Stocking rate and initial FOO (ranging between 1100 and 7000 kg DM/ha) had no significant effects on pasture growth rate (PGR) through most of spring. Late in spring, increased stocking rates resulted in greater (P < 0.05) PGR. The total amount of pasture produced in the grazing period was not significantly affected by stocking rate (Expt 1, 7530 to 8200 kg DM/ha; Expt 2, 6390 to 6860 kg DM/ha). The relationships between liveweight change (LWC) or wool growth rates (WGR) and FO, during the period until pasture wilting at the lowest stocking rate (83 days in Expt 1; 76 days in Expt 2), were described by Mitscherlich equations. More than 74% of the variation in LWC or WGR was explained by differences in green FOO. In Expts 1 and 2 respectively, more than 90% of the maximum liveweight gain (66 and 192 g/day) was achieved at a FOO of 4000 or 3000 kg DM/ha, and sheep maintained weight at 2000 or 1000 kg DM/ha. More than 90% of the maximum WGR (22.3 and 19.0 g/day) was achieved at a FOO of 3000 or 2000 kg DM/ha. More than 70% of the variation in WGR was explained by LWC in both experiments. The slopes of the linear relationships were 0.047 g wool/g LWC in Expt 1, and 0.024 g wool/g LWC in Expt 2. At liveweight maintenance, sheep produced 15% less (Expt 1) or 25% less (Expt 2) wool than those grazed under conditions which allowed maximum rates of liveweight gain. Fibre diameter (FD) and length of wool grown were affected in the same manner as WGR by increases in FOO and hence LWC. In Expts 1 and 2 respectively, total clean wool weights were reduced by 17 and 9 g, mean FD by 0.05 and 0.02 microns and staple length by 0.35 and 0.13 mm, for each increase of one sheep/ha during the spring treatment periods. The effects of stocking rate in spring on annual wool production, mean FD and staple length were described by linear (P < 0.05 to P < 0.01) relationships. Standard deviation of midside FD (Expt 2), staple strength and position of break (both experiments) did not change significantly with stocking rate. These results indicate that grazing to a lower FOO during spring can be used to manipulate the amount and characteristics of wool produced by Merino wethers grazing annual pastures in Mediterranean climates with 600-700 mm rainfall.


Author(s):  
K. Marsh ◽  
L.F.C. Brunswick

Lucerne and lucerne/prairie grass swards were compared at three stocking rates using yearling beef cattle. A 35 day rotational grazing system was used and the experiment ran for 130 days from early October, 1976. Pasture DM yields were higher on the mixed sward but animal production was greater on the lucerne only sward, particularly from December onwards. Increasing stocking rate tended to reduce herbage DM yield and per-animal production. There was no significant interaction between sward type and stocking rate on either sward or animal yield. Lucerne and lucerne/ prairie grass swards on pumice soil compared favourably with fertile Waikato permanent pastures in terms of carcass gain per hectare over the grazing period.


2008 ◽  
Vol 40 (1) ◽  
pp. 301-313 ◽  
Author(s):  
Jeffrey M. Gillespie ◽  
Wayne Wyatt ◽  
Brad Venuto ◽  
David Blouin ◽  
Robert Boucher

Comparisons are made concerning labor required and profitability associated with continuous grazing at three stocking rates and rotational grazing at a high stocking rate in the U.S. Gulf Coast region. A unique data set was collected using a time and motion study method to determine labor requirements. Profits are lowest for low stocking rate–continuous grazing and high stocking rate–rotational grazing. Total labor and labor in three specific categories are greater on per acre and/or per cow bases with rotational-grazing than with continuous-grazing strategies. These results help to explain relatively low adoption rates of rotational grazing in the region.


1977 ◽  
Vol 28 (1) ◽  
pp. 133 ◽  
Author(s):  
JP Langlands

Grass and milk consumption and liveweight changes of lambs grazed at stocking rates ranging from 9 to 35 sheep/ha were measured during a 105 day lactation. Grass consumption and wool production of their mothers and of similar ewes without lambs were also determined. The forage and total organic matter intakes of the lamb increased with time while milk consumption declined; all three variables were negatively correlated with stocking rate. The intake of the ewe and its liveweight gain were not sensitive to increasing stocking rate, but wool production declined at higher stocking rates. The maintenance requirement of the ewes was estimated to be 218 kJ metabolizable energy/kg liveweight, and the efficiency with which metabolizable energy was utilized for milk production was 66%. Lactation increased the intake of the ewe but reduced its wool production.


1979 ◽  
Vol 19 (97) ◽  
pp. 140 ◽  
Author(s):  
EJ Bowen ◽  
KG Rickert

At Gayndah, south-eastern Queensland, a native Heteropogon contortus pasture, sown to fine-stem stylo (Stylosanthes guianensis var. intermedia), and invaded by red natal grass (Rhynchelytrum repens), was grazed by weaner steers from June 1 in three treatments : heavy and light put-and-take grazing for five years from 1971, and set-stocked at 1.37 animals ha-1 for two years from 1974. Weight gains in the put-and-take treatments were not significantly different. The mean annual liveweight gain was 167 kg animal-1 at a mean equivalent stocking rate of 1.47 animals ha-1. Over the same period unsown native pasture, cleared of timber, gave a gain of 62 kg animal-1 at 0.62 animals ha-1. In all seasons except summer, weight gains declined linearly with stocking rate and in 1972-73, with a mean equivalent stocking rate of 2.66 animals ha-1, the annual gain was almost halved. When equivalent stocking rates were 0.9, 0.9, 1.8 and 1.2 animals ha-1 in winter, spring, summer and autumn, the respective gains were 4, 73, 65 and 45 kg animal-1. The set-stocked treatment had a mean annual gain of 147 kg animal-1. At another site 116 km north-west of Gayndah, two paddocks of Heteropogon contortus and fine-stem stylo were set-stocked with weaners over four years. One paddock had four applications of superphosphate of 250 kg ha-1. The mean annual liveweight gains were significantly different, being 154 and 143 kg animal-1 in the fertilized and unfertilized paddocks at mean stocking rates of 0.83 and 0.74 animals ha-1, respectively. In a grazing protection experiment the density of fine-stem stylo declined exponentially with an accumulation of pasture dry matter in spring and summer. Heavy continuous grazing, an annual hay cut and an accidental fire all increased the density of fine-stem stylo. Management options to maintain the density of fine-stem stylo and the relative importance of the legume and grass to animal production are discussed.


1975 ◽  
Vol 15 (73) ◽  
pp. 159 ◽  
Author(s):  
PA Kenney ◽  
IF Davis

A study was made during a three year period (1 968-1 970) of wool production by a flock of 540 ewes grazing annual pasture at Werribee, Victoria. The ewes were stocked at three rates (5, 7 1/2 and 10 ewes ha-1) and lambed between July 6 and August 20 or between September 10 and October 29 each year. Fibre diameter and length of wool samples were measured in 1968, 1969 and 1970 ; in 1970 growth of greasy wool was calculated from staples of dye-banded wool. Wool growth was reduced in all ewes during late pregnancy and early lactation but was not affected during late lactation in ewes lambing in September. The proportion of tender fleeces from all ewes was greater in 1970 and the weight of fleeces from only those ewes bearing single lambs was less in all years for ewes lambing in July than for ewes lambing in September. More ewes were barren and fewer ewes had twins in July and consequently the mean fleece weights of all ewes from both groups were similar. Fleeces from ewes stocked at 10 ha-1 were lighter, shorter and finer than fleeces from ewes stocked at 5 and 7 1/2 ha-1, but the proportion of tender fleeces did not differ between the groups. Wool production of ewes stocked at 5 and 7 1/2 ha-1 increased from 1968 to 1970, whereas that of ewes at 10 ha-1 did not. This was associated with differences in pasture availability and composition. At 10 ewes ha-1 less pasture was present in winter and spring in 1970 than in 1968, whereas at the other stocking rates it was greater. In 1970 the density of weeds in autumn was greater and in spring more silver grass (Vulpia spp.) and less brome grass (Bromus spp.) was available at the high stocking rate.


1971 ◽  
Vol 11 (48) ◽  
pp. 9 ◽  
Author(s):  
JP Langlands

For 59 days grazing Merino wethers were given 0, 40, or 80 g of sodium caseinate each day directly into the abomasum. Clean wool production was increased by 35 and 38 per cent after giving 40 and 80 g per day respectively. In a second experiment grazing Merino wethers were given 0 or 80 g casein, or 40 or 80 g casein treated with formaldehyde (HCHO-casein) each day through cannulae inserted into the rumen. Wool production was increased by 22, 38, and 51 per cent by the 80 g casein, 40 g HCHO-casein and 80 g HCHO-casein treatments respectively. In a third experiment Merino wethers, in which rumen cannulae had been prepared, were grazed at a high and low stocking rate, and were given daily 0, 20, 40, or 60 g HCHO-casein through the rumen cannulae. Wool production and efficiency of wool production increased, and herbage intake declined as the level of supplementary feeding increased.


Sign in / Sign up

Export Citation Format

Share Document