scholarly journals BEEF PRODUCTION FROM LUCERNE AND LUCERNE/PRAIRIE GRASS SWARDS ON THE PUMICE SOILS OF THE TAUPO REGION

Author(s):  
K. Marsh ◽  
L.F.C. Brunswick

Lucerne and lucerne/prairie grass swards were compared at three stocking rates using yearling beef cattle. A 35 day rotational grazing system was used and the experiment ran for 130 days from early October, 1976. Pasture DM yields were higher on the mixed sward but animal production was greater on the lucerne only sward, particularly from December onwards. Increasing stocking rate tended to reduce herbage DM yield and per-animal production. There was no significant interaction between sward type and stocking rate on either sward or animal yield. Lucerne and lucerne/ prairie grass swards on pumice soil compared favourably with fertile Waikato permanent pastures in terms of carcass gain per hectare over the grazing period.

1963 ◽  
Vol 61 (2) ◽  
pp. 147-166 ◽  
Author(s):  
C. P. McMeekan ◽  
M. J. Walshe

1. A large-scale grazing management study comparing rotational grazing and continuous grazing with dairy cows at two stocking rates over four complete production seasons is described.2. The four treatments were: (i) controlled grazing, light stocking rate; (ii) controlled grazing, heavy stocking rate; (iii) uncontrolled grazing, light stocking rate; (iv) uncontrolled grazing, heavy stocking rate.Each treatment involved 40 cows for a first 2-year phase and 42 cows for the following 2 years. Each herd had a normal age distribution pattern and seven 2-year-old first lactation heifers (17% of total herd) were introduced each year to maintain this pattern.3. Stocking rate was the more important factor affecting the efficiency of pasture utilization as measured by per acre output of milk and butterfat. In general, high stocking was associated with higher outputs per acre despite lower yields per animal.4. Grazing method was of less importance. In general, controlled rotational grazing was superior to uncontrolled continuous grazing, both per animal and per acre, but the average influence even of these extremes of management was only half that of stocking rate.5. Significant interactions between stocking rate and grazing method existed. Under continuous grazing a point was reached where production per acre declined to the vanishing point with increased stocking rate due to excessive depression of per cow yield: this point was not reached under rotational grazing at the same high stocking levels.6. The results suggest that optimum stocking rate under rotational grazing occurs at a level some 5–10% higher than under continuous grazing. A depression of 10–12% in per cow yield, compared with more lenient grazing, corresponds with optimum stocking level irrespective of the grazing system. This estimate is suggested as a guide line in applying the principles involved.


Author(s):  
S.T. Morris ◽  
A.F. Mcfrae

This paper reports and discusses the results of 4 years of trials (1985-1988) involving 2 farmlets, one receiving 3 nitrogen applications (50 kg /ha) in autumn, winter and spring (+N) and one receiving no N fertiliser (-N). Stocking rags were 3.3 animals/ha on -N farmlet and 4.3 animals/ha on the +N farmlet for the first 3 years, with the objective being to utilise the extra N-boosted grass with extra animals/ha but not to sacrifice individual animal performance. In the fourth year the stocking rates were kept the same on each farmlet (3.3 animals/ha) in an endeavour to utilise the extra grass grown on the +N farmlet by way of increased per head performance. In 2 of the 3 years (1985 and 1987) where the +N farmlet supported the higher stocking rate, liveweight gain (LWG) did not differ between animals. In 1986 the extra animals on the -l-N farmlet had a lower LWG, whereas in 1988 the LWGs were similar for the 2 farmlets stocked at the same rate. The apparent DM responses (kg DM/kg N applied) ranged from 2 to 12. The rates of N fertiliser used in this trial do not appear to result in economic increases in pasture production for the beef production system reported here. Nitrogen fertiliser did not reduce the clover content of pastures rotationally grazed by beef cattle. Keywords beef production, nitrogen fertiliser, pasture composition, livewieght gain, economics.


1993 ◽  
Vol 15 (2) ◽  
pp. 302 ◽  
Author(s):  
R Roe ◽  
GH Allen

Pasture productivity and wool production on the Warrego Mitchell grass (Astrebla spp.) rangeland in south-westem Queensland were studied over a period of 13 years under continuous or rotational grazing, each at three stocking rates. The stocking rates were one sheep to three, two or one hectares and the rotational grazing was a six- monthly system of summer or winter grazing. The grazing treatments were applied over two five- year terms with a nil-grazing period at the conclusion of each. The latter periods provided a means of measuring the cumulative effects of the grazing treatments. Drought conditions prevailed during the first term so that supplementary feeding was necessary, but the second experienced above average rainfall. Quarterly measurements were made of the pasture dry matter on offer and its botanical and chemical composition. Monthly sheep liveweights, annual wool production and sheep size development in each term were also measured and monetary returns from wool calculated. Rainfall had a major influence on the results recorded and tended to nullify the effects of grazing treatments. Its unpredictability precludes the reliable use of complex techniques in management planning. The overall results suggested that the optimum grazing management of this Mitchell grass rangeland would be continuous grazing at a stocking rate of one sheep to two hectares. Supplementary feeding during drought would be obligatory and should be budgeted for in long-term planning. There was a 50% higher monetary return from this grazing treatment than from the lighter stocking rate and pasture stability (maintenance of Astrebla spp.) was sustained. Pasture stability was adversely affected by the heavier stocking rate. There was no srlstained advantage from rotational grazing compared with continuous grazing.


1977 ◽  
Vol 17 (85) ◽  
pp. 187 ◽  
Author(s):  
WH Winter ◽  
LA Edye ◽  
WT Williams

The animal production from two grass/legume pastures was measured over three years. The pastures were grazed at four stocking rates and annually received one of three maintenance rates of phosphorus fertilizer. The animals were given a phosphorus supplement at two rates. The grasses were either Brachiaria decumbens cv. Basilisk or Panicum maximum (common guinea grass) each sown with Stylosanthesguyanensis cv. Endeavour and Macroptilium atropurpureum cv. Siratro. The grasses had little effect on animal production although three Panicum pastures at higher stocking rates became overgrazed and required destocking during the experiment. Even though 73.5 kg ha-1 of phosphorus was used to establish the pastures, the maintenance rate of 40 kg ha-1 gave higher production than the 10 kg ha-1 rate in the first two years. In the third year, production was similar for each fertilizer rate. There was a concomitant rise in faecal phosphorus level with fertilizer rate but no such effect with blood inorganic phosphorus levels. Over the three years of the experiment the liveweight gain per hectare was similar (mean of 0.54 kg per day) at 1.7 and 1.9 beasts ha-1 but was significantly less at lighter stocking rates. In the last two years stocking rate did not significantly affect liveweight gain per head. At the highest stocking rate, gains were greater during the wet season and losses greater during the dry season than those at the lowest stocking rate. The phosphorus supplement did not affect animal production but increased blood inorgainc phosphorus levels. The relationships of animal production with blood and faecal compositions and with the pasture measurements described in a previous paper are discussed.


Author(s):  
B.E. Allan

Continuous stocking was compared with intermittent (two paddock) and rotational (six paddock) grazing at low, medium and high stocking rates equivalent to 1.0x, 1.5x and 2.0x conventional rates for oversown tussock country (500 mm annual rainfall). 'By the sixth year liveweight gain/ha from Merino wether hoggets was improved 26% by intermittent and rotational grazing at medium stocking rates from that at conventional stocking rates. A strong interaction was demonstrated, with advantage in liveweight gain from intermittent and rotational grazing strengthening with increasing stocking rate. Total vegetative cover (75.8%) remained unchanged. Cocksfoot increased under low stocking while ryegrass increased under high stocking. A 60% overall loss in ryegrass during 1982 was attributed to unusually low winter soil temperatures. White clover cover was affected more b y climate than by grazing. A!!hough ?here *were interim differences, herbage production by the sixth year was similar for all treatments. Keywords: Tussock country, oversown, grazing, stocking rate, subdivision, pasture development, utilisation, Merino, liveweight.


1973 ◽  
Vol 13 (64) ◽  
pp. 530 ◽  
Author(s):  
TR Evans ◽  
WW Bryan

Animal production was measured over a six-year period from grass-legume pastures receiving different maintenance rates of phosphorus and potassium fertilizers, and continuously grazed at stocking rates of 1.23, 1.65 and 2.47 beasts ha-1. The pastures consisted of the grasses Chloris gayana, Digitaria decumbens, Paspalum dilatatum and P. commersonii and the legumes Desmodium intortum, D. uncinatum, L otononis bainesii, Macrop tilium lath yroides and Trifolium repens. Annual applications of 250 kg ha-1 superphosphate (9.6 per cent P) significantly increased animal production above applications of 125 kg ha-1 superphosphate, but there were no significant effects of increase in level of applied potassium (as KCI) beyond 63 kg ha-1. The greatest liveweight gain per hectare was obtained at a stocking rate of 2.47 beasts ha-1 but rate of liveweight change was more variable than at the other stocking rates. Conversely, daily liveweight gains per head and rate of turnoff were greatest at 1.23 beasts ha-1. Both stocking rates and levels of superphosphate affected quality of carcase produced, and there was a significant positive correlation of liveweight gain and legume content of the pastures.


1968 ◽  
Vol 71 (3) ◽  
pp. 327-335 ◽  
Author(s):  
J. B. Owen ◽  
W. J. Ridgman

SUMMARYExperiments designed to assess differences between treatments in pasture productivity as measured by the production of animals are complicated by the stocking rates chosen. The paper attempts toderive a simple model relating production per animal and production per unit area to stocking rate for meat animals, based on biological considerations.A method is proposed which would allow meaningful grazing experiments to be carried out employing only one stocking rate, thus considerably reducing the expense of this type of experimentation.The model is applied to some recent data obtained by Hodgson (1966) and Appleton (1967, personal communication).


2010 ◽  
Vol 39 (7) ◽  
pp. 1548-1557 ◽  
Author(s):  
Nelson Massaru Fukumoto ◽  
Julio Cesar Damasceno ◽  
Fermino Deresz ◽  
Carlos Eugênio Martins ◽  
Antônio Carlos Cóser ◽  
...  

The objective of this study was to evaluate milk yield and composition, dry matter intake, and stocking rate in pastures with tanzania grass (Panicum maximum cv. Tanzânia), star grass (Cynodon nlemfuensis cv. Estrela-Africana), and marandu grass (Brachiaria brizantha cv. Marandu). The grasses were managed in a rotational grazing system with Holstein x Zebu crossbreed cows, with a 30-day resting period and three days of paddock occupation. The pastures were fertilized with 1,000 kg/ha/year using the 20:05:20 (NPK) formula, split in three applications during the rainy season. It was used a complete random block experimental design with three factors being studied and two replications. In the experiment, four cows/paddock were used and, when it was necessary, regulator animals were added in order to obtain a supply of 7% body weight green forage dry matter. The animals were individually fed concentrate at 2 kg/day during the experimental period. Milk yield did not differ among the three grasses, with values of 9.1; 9.1; and 8.7 kg/cow/day for pastures with tanzania grass, star grass and marandu grass, respectively. Similarly, grass did not affect milk chemical composition. Stocking rate was similar among the three grasses, with values of 4.6; 4.5 and 5.0 UA/ha for tanzania grass, star grass and marandu grass, respectively. The highest dry matter intake was observed for tanzania grass with 2.6% of the body weight while stargrass (2.3%) and marandu grass (2.4%) did not differ among each other. The highest dry matter intake on tanzania grass pasture was not reflected on milk yield per animal. Milk yield and composition and stocking rate are similar among the evaluated grasses.


1997 ◽  
Vol 77 (4) ◽  
pp. 669-676 ◽  
Author(s):  
J. D. Popp ◽  
W. P. McCaughey ◽  
R. D. H. Cohen

A 4-yr experiment was conducted (1991 to 1994) near Brandon, MB, to determine the effects of grazing system (continuous and rotational) and stocking rate [light (1.1 steers ha−1); heavy (2.2 steers ha−1)] on the productivity, botanical composition and soil surface characteristics of an alfalfa (Medicago sativa L.; approximately 70%), meadow bromegrass (Bromus biebersteinii Roem & Schult.; 25%) and Russian wild ryegrass [Psathyrostachys juncea (Fisch.) Nevski; 5%] pasture. Grazing season length was shorter (P < 0.05) for cattle in continuously compared with rotationally stocked pastures in 1991, while in 1993 and 1994 it was shortest (P < 0.05) in heavily stocked continuously grazed pastures. Carrying capacity (steer days ha–1) was greater (P < 0.05) in heavily stocked rotationally grazed pastures compared with other treatments in 1991, 1993 and 1994. In 1992, it was greater (P < 0.05) in heavy than light stocking rate treatments for both rotationally and continuously grazed pastures. Cattle usually gained more (P < 0.05) per day (kg d−1) and during the season (kg hd−1) at light than at heavy stocking rates, while total liveweight production (kg ha−1) was greater (P < 0.05) at heavy than at light stocking rates. Forage production and disappearance did not differ (P > 0.05) within grazing systems and stocking rates from 1991 to 1993, but in 1994, production and disappearance were greater (P < 0.05) at heavy than at light stocking rates. Mean seasonal herbage mass available and carry-over were greater (P < 0.05) in lightly stocked pastures than heavily stocked pastures from 1991 to 1994. After the first year of grazing, the proportion of alfalfa increased (P < 0.05), while grasses declined (P < 0.05) within all grazing treatments. In subsequent years, a trend was observed, where alfalfa declined and grasses increased in all pastures, except those stocked heavily and grazed continuously, which by 1994 had the greatest (P < 0.05) percentage of alfalfa. As years progressed, increases (P < 0.05) in basal cover concurrent with declines in bare ground were recorded on all grazing treatments, while litter cover often did not differ (P > 0.05) within either grazing system or stocking rate, except in 1992, when basal cover was lowest (P < 0.05), while litter cover was greatest (P < 0.05) on lightly stocked continuously grazed pastures compared with other treatments. Stocking rates were a key factor to optimizing individual animal performance and/or gain per hectare on alfalfa grass pastures, however differences in the effect of continuous and rotational stocking on pasture productivity were minimal. Key words: Alfalfa, grazing, stocker cattle, production


2021 ◽  
Vol 61 (1) ◽  
pp. 72
Author(s):  
M. K. Bowen ◽  
F. Chudleigh ◽  
D. Phelps

Context The large inter-annual and decadal rainfall variability that occurs in northern Australian rangelands poses major challenges for the profitable and sustainable management of grazing businesses. Aims An integrated bio-economic modelling framework (GRASP integrated with Breedcow and Dynama (BCD)) was developed to assess the effect of alternative grazing-management options on the profitability and sustainability of a beef cattle enterprise in the central-western Mitchell grasslands of Queensland over a multi-decadal time period. Methods Four grazing-management strategies were simulated over a 36-year period (1982–2017) in the GRASP pasture-growth model, using historic climate records for Longreach in central-western Queensland. Simulated annual stocking rates and steer liveweight-gain predictions from GRASP were integrated with published functions for mortality and conception rates in beef-breeding cattle in northern Australia, and then used to develop dynamic BCD cattle-herd models and discounted cash-flow budgets over the last 30 years of the period (1988–2017), following a 6-year model-equilibration period. The grazing-management strategies differed in the extent to which stocking rates were adjusted each year, from a common starting point in Year 1, in response to changes in the amount of forage available at the end of the summer growing season (May). They ranged from a low flexibility of ‘Safe stocking rate’ (SSR) and ‘Retain core herd’ (RCH) strategies, to a moderate flexibility of ‘Drought responsive’ (DR), to a ‘Fully flexible’ (FF) strategy. The RCH strategy included the following two herd-management scenarios: (1) ‘Retain herd structure’, where a mix of cattle were sold in response to low pasture availability, and (2) ‘Retain core breeders’, where steers were sold before reducing the breeder herd. Herd-management scenarios within the DR and FF strategies examined five and four options respectively, to rebuild cattle numbers and utilise available pasture following herd reductions made in response to drought. Key results Property-level investment returns expressed as the internal rate of return (IRR) were poor for SSR (–0.09%) and the three other strategies when the herd was rebuilt following drought through natural increase alone (RCH, –0.27%; DR, –1.57%; and FF, –4.44%). However, positive IRR were achieved when the DR herd was rebuilt through purchasing a mix of cattle (1.70%), purchasing pregnant cows (1.45%), trading steers (0.50%) or accepting cattle on agistment (0.19%). A positive IRR of 0.70% was also achieved for the FF property when purchasing a mix of cattle to rebuild numbers. However, negative returns were obtained when either trading steers (–2.60%) or agistment (–0.11%) scenarios were applied to the FF property. Strategies that were either inflexible or highly flexible increased the risk of financial losses and business failure. Property-level pasture condition (expressed as the percentage of perennial grasses; %P) was initially 69%P and was maintained under the DR strategy (68%P; average of final 5 years). The SSR strategy increased pasture condition by 25% to 86%P, while the RCH and FF strategies decreased pasture condition by 29% (49%P) and 65% (24%P) respectively. Conclusions In a highly variable and unpredictable climate, managing stocking rates with a moderate degree of flexibility in response to pasture availability (DR) was the most profitable approach and also maintained pasture condition. However, it was essential to economic viability that the property was re-stocked as soon as possible, in line with pasture availability, once good seasonal conditions returned. Implications This bio-economic modelling analysis refines current grazing-management recommendations by providing insights into both the economic and sustainability consequences of stocking-rate flexibility in response to fluctuating pasture supply. Caution should be exercised in recommending either overly conservative safe stocking strategies that are inflexible, or overly flexible stocking strategies, due to the increased risk of very poor outcomes.


Sign in / Sign up

Export Citation Format

Share Document