Effects of increasing salinity and 15N-labelled urea levels on growth, N uptake, and water use efficiency of young tomato plants

Soil Research ◽  
2004 ◽  
Vol 42 (3) ◽  
pp. 345 ◽  
Author(s):  
C. Kütük ◽  
G. Çaycı ◽  
L. K. Heng

A greenhouse experiment was conducted to investigate the response of tomato plants (Lycopersicon lycopersicum L.) to salinity and to determine the interactive effects of salinity and nitrogen fertilisation on yield, nitrogen uptake, water use efficiency (WUE), and root-zone salinity during early plant growth. Furthermore, the effects of salinity and N fertilisation were evaluated by measurement of carbon isotope discrimination (Δ). Tomato plants were grown in pots filled with 8 kg (dry weight equivalent) of Krumbach sandy loam. Salinity treatments were imposed by irrigation water containing Na, Ca, and Mg salts and having electrical conductivity of 0, 3, 6, 9, and 12 dS/m at 25�C. 15N-labelled urea (10 atom % excess) was also applied at 0, 80, 160, and 240 mg N/kg soil. Increasing salinity reduced plant growth; fresh and dry weights of shoots and roots decreased significantly, except for the non-fertilised plants. The maximum growth reduction in shoots occurred due to salinity–N fertilisation relationships at 12 dS/m (59.4% reduction compared with 0 dS/m in 160 mg N/kg). Root growth was less affected than shoots. Vegetative growth and N content increased with increasing nitrogen treatment. However, salinity generally reduced N uptake by plants. Δ was negatively correlated with WUE at all salinity levels in young tomato plants. Similar correlations were also obtained between WUE and Δ at various N treatments; the result suggests that Δ is a useful tool for assessing stress conditions. Smaller Δ values were obtained when salinity or N level increased. Increasing N fertiliser increased WUE in plants, whereas increasing salinity increased WUE at 3 dS/m and decreased WUE to some extent at other salinity levels. Electrical conductivity of the root-zone increased due to increasing salinity and time, whereas pH decreased. It was concluded that the early stage of development was a salt sensitive period for tomato plants.

HortScience ◽  
2005 ◽  
Vol 40 (4) ◽  
pp. 1011C-1011
Author(s):  
Francesco Montesano ◽  
Gianfranco Favuzzi ◽  
Angelo Parente ◽  
Francesco Serio ◽  
Pietro Santamaria

Sustainability of the soilless greenhouse system is under discussion in open cycle systems, where excess nutrient solution (NS) draining from the substrate is released into the environment. Closed growing systems (CGS) lead to the saving of water and fertilizers. The aim of this research was to compare two CGS: nutrient film technique (NFT) and trough-bench technique [Subirrigation (SUB)]. We report the results of yield and water use efficiency (WUE) of tomato (Lycopersicon esculentum Mill. cv. Kabiria) plants. NFT plants were grown with two electrical conductivity (EC) levels (2-4 and 6-8 dS·m-1) of NS (its highest EC was obtained by increasing all the ions therein). In the SUB system, two water tensions (-4 and –8 kPa) of susbtrate were compared; a NS with an electrical conductivity level of 2 dS·m-1 was used. The tensions were measured through tensiometers. Tomato plants were transplanted at the fourth to fifth true-leaf stage into pots containing 8 L of perlite for SUB. In both CGS, the plants were placed on steel gullies (slope of 2%). Six clusters per plant were harvested. Total and commercial yield were not influenced by the CGS (on average, 1959 and 1853 g/plant, respectively). The average weight of the fruit was lower in the SUB system's plants (40 vs. 43 g/fruit, respectively, for SUB and NFT). Salinity and water stresses resulted in a reduction of 26% of the yield and 16% of the average weight of fruits. The WUE was higher in SUB than NFT (30.7 vs. 26.0 g·L-1, respectively). Salinity stress reduced WUE (29.4 v.s 22.6 g·L-1 with 2–4 and 6–8 dS·m-1, respectively), whereas water stress did not.


2020 ◽  
Vol 12 (3) ◽  
pp. 1100
Author(s):  
Marjan Vahabi Mashhor ◽  
Mahmoud Mashal ◽  
Seyyed Ebrahim Hashemi Garmdareh ◽  
Juan Reca ◽  
Maria Teresa Lao ◽  
...  

A sub-irrigated planter (SIP) is a container irrigation technique in which water is supplied to the crop from the bottom, stored in a saturated media-filled reservoir beneath an unsaturated soil, and then delivered by capillary action to the root zone. The aim of this study was to optimize the water management and to assess the performance of this technique in terms of water use efficiency, soil moisture, and solute distribution in comparison with surface irrigation in a Mediterranean greenhouse. The experiment consisted of four SIP treatments, with a constant water level in the bottom reservoir in order to evaluate the effect of two different irrigation salinities (1.2 and 2.2 dS m−1) and two depths of substrate profiles (25 and 15 cm). The results showed that SIP is capable of significantly improving both water-use efficiency and plant productivity compared with surface irrigation. Also, a 24% average reduction in water consumption was observed while using SIP. Moreover, SIPs with a higher depth were recommended as the optimum treatments within SIPs. The type of irrigation method affected the salinity distribution in the substrate profile; the highest salinity levels were registered at the top layers in SIPs, whereas the maximum salinity levels for the surface treatments were observed at the bottom layers. SIPs provide a practical solution for the irrigation of plants in areas facing water quality and scarcity problems.


2008 ◽  
Vol 95 (6) ◽  
pp. 659-668 ◽  
Author(s):  
Taisheng Du ◽  
Shaozhong Kang ◽  
Jianhua Zhang ◽  
Fusheng Li ◽  
Boyuan Yan

2012 ◽  
Vol 212-213 ◽  
pp. 578-585
Author(s):  
Zhong Wen Yang ◽  
Jun Ying Jin ◽  
Xin Yi Xu

Water stress is an important approach to use water resources efficiently and remit the agricultural water shortage. Hemarthria compressa is one of perennial grasses, a pasture of high quality, which has abundant species resources in China. To explore the response of the growth, yield and water use efficiency(WUE) of Hemarthria compressa under water stress, this study, adapting pot experiment, imposed three water stress degree (LD, MD and SD) treatments and a control treatment on Hemarthria compressa. The data of growth indicators during control period, yield and total water consumption were obtained. The results show a noticeable inhibitory action of water stress on the growth of Hemarthria compressa. Along with the intensifying of water stress, plant height increment, leaf area, total biomass, dry matter of each organ and yield decreased, and the root-shoot ratio increased firstly and inclined to slump finally. Plants under the middle water stress treatment achieved the greatest WUE of 38.25 kg/m3. The first 10d in the water control period was the most sensitive period of the pasture responding to water stress.


2021 ◽  
Vol 0 (0) ◽  
pp. 0-0
Author(s):  
Wafaa Abd El-Bary ◽  
Mahmoud Hegazi ◽  
Khaled El-Bagoury ◽  
Wael Sultan ◽  
Manal Mubarak

Sign in / Sign up

Export Citation Format

Share Document