scholarly journals (306) NFT versus Subirrigation: I. Yield and Water Use Efficiency of Tomato Grown in Closed Soilless Systems under Salinity or Water Stress

HortScience ◽  
2005 ◽  
Vol 40 (4) ◽  
pp. 1011C-1011
Author(s):  
Francesco Montesano ◽  
Gianfranco Favuzzi ◽  
Angelo Parente ◽  
Francesco Serio ◽  
Pietro Santamaria

Sustainability of the soilless greenhouse system is under discussion in open cycle systems, where excess nutrient solution (NS) draining from the substrate is released into the environment. Closed growing systems (CGS) lead to the saving of water and fertilizers. The aim of this research was to compare two CGS: nutrient film technique (NFT) and trough-bench technique [Subirrigation (SUB)]. We report the results of yield and water use efficiency (WUE) of tomato (Lycopersicon esculentum Mill. cv. Kabiria) plants. NFT plants were grown with two electrical conductivity (EC) levels (2-4 and 6-8 dS·m-1) of NS (its highest EC was obtained by increasing all the ions therein). In the SUB system, two water tensions (-4 and –8 kPa) of susbtrate were compared; a NS with an electrical conductivity level of 2 dS·m-1 was used. The tensions were measured through tensiometers. Tomato plants were transplanted at the fourth to fifth true-leaf stage into pots containing 8 L of perlite for SUB. In both CGS, the plants were placed on steel gullies (slope of 2%). Six clusters per plant were harvested. Total and commercial yield were not influenced by the CGS (on average, 1959 and 1853 g/plant, respectively). The average weight of the fruit was lower in the SUB system's plants (40 vs. 43 g/fruit, respectively, for SUB and NFT). Salinity and water stresses resulted in a reduction of 26% of the yield and 16% of the average weight of fruits. The WUE was higher in SUB than NFT (30.7 vs. 26.0 g·L-1, respectively). Salinity stress reduced WUE (29.4 v.s 22.6 g·L-1 with 2–4 and 6–8 dS·m-1, respectively), whereas water stress did not.

Soil Research ◽  
2004 ◽  
Vol 42 (3) ◽  
pp. 345 ◽  
Author(s):  
C. Kütük ◽  
G. Çaycı ◽  
L. K. Heng

A greenhouse experiment was conducted to investigate the response of tomato plants (Lycopersicon lycopersicum L.) to salinity and to determine the interactive effects of salinity and nitrogen fertilisation on yield, nitrogen uptake, water use efficiency (WUE), and root-zone salinity during early plant growth. Furthermore, the effects of salinity and N fertilisation were evaluated by measurement of carbon isotope discrimination (Δ). Tomato plants were grown in pots filled with 8 kg (dry weight equivalent) of Krumbach sandy loam. Salinity treatments were imposed by irrigation water containing Na, Ca, and Mg salts and having electrical conductivity of 0, 3, 6, 9, and 12 dS/m at 25�C. 15N-labelled urea (10 atom % excess) was also applied at 0, 80, 160, and 240 mg N/kg soil. Increasing salinity reduced plant growth; fresh and dry weights of shoots and roots decreased significantly, except for the non-fertilised plants. The maximum growth reduction in shoots occurred due to salinity–N fertilisation relationships at 12 dS/m (59.4% reduction compared with 0 dS/m in 160 mg N/kg). Root growth was less affected than shoots. Vegetative growth and N content increased with increasing nitrogen treatment. However, salinity generally reduced N uptake by plants. Δ was negatively correlated with WUE at all salinity levels in young tomato plants. Similar correlations were also obtained between WUE and Δ at various N treatments; the result suggests that Δ is a useful tool for assessing stress conditions. Smaller Δ values were obtained when salinity or N level increased. Increasing N fertiliser increased WUE in plants, whereas increasing salinity increased WUE at 3 dS/m and decreased WUE to some extent at other salinity levels. Electrical conductivity of the root-zone increased due to increasing salinity and time, whereas pH decreased. It was concluded that the early stage of development was a salt sensitive period for tomato plants.


2012 ◽  
Vol 212-213 ◽  
pp. 578-585
Author(s):  
Zhong Wen Yang ◽  
Jun Ying Jin ◽  
Xin Yi Xu

Water stress is an important approach to use water resources efficiently and remit the agricultural water shortage. Hemarthria compressa is one of perennial grasses, a pasture of high quality, which has abundant species resources in China. To explore the response of the growth, yield and water use efficiency(WUE) of Hemarthria compressa under water stress, this study, adapting pot experiment, imposed three water stress degree (LD, MD and SD) treatments and a control treatment on Hemarthria compressa. The data of growth indicators during control period, yield and total water consumption were obtained. The results show a noticeable inhibitory action of water stress on the growth of Hemarthria compressa. Along with the intensifying of water stress, plant height increment, leaf area, total biomass, dry matter of each organ and yield decreased, and the root-shoot ratio increased firstly and inclined to slump finally. Plants under the middle water stress treatment achieved the greatest WUE of 38.25 kg/m3. The first 10d in the water control period was the most sensitive period of the pasture responding to water stress.


Author(s):  
Lucas Baiochi Riboldi ◽  
Rafaella Zanetti Dias ◽  
Paulo Roberto de Camargo e Castro ◽  
Sérgio Tonetto de Freitas

HortScience ◽  
2018 ◽  
Vol 53 (12) ◽  
pp. 1784-1790 ◽  
Author(s):  
Dalong Zhang ◽  
Yuping Liu ◽  
Yang Li ◽  
Lijie Qin ◽  
Jun Li ◽  
...  

Although atmospheric evaporative demand mediates water flow and constrains water-use efficiency (WUE) to a large extent, the potential to reduce irrigation demand and improve water productivity by regulating the atmospheric water driving force is highly uncertain. To bridge this gap, water transport in combination with plant productivity was examined in cucumber (Cucumis sativus L.) grown at contrasting evaporative demand gradients. Reducing the excessive vapor pressure deficit (VPD) decreased the water flow rate, which reduced irrigation consumption significantly by 16.4%. Reducing excessive evaporative demand moderated plant water stress, as leaf dehydration, hydraulic limitation, and excessive negative water potential were prevented by maintaining water balance in the low-VPD treatment. The moderation of plant water stress by reducing evaporative demand sustained stomatal function for photosynthesis and plant growth, which increased substantially fruit yield and shoot biomass by 20.1% and 18.4%, respectively. From a physiological perspective, a reduction in irrigation demand and an improvement in plant productivity were achieved concomitantly by reducing the excessive VPD. Consequently, WUE based on the criteria of plant biomass and fruit yield was increased significantly by 43.1% and 40.5%, respectively.


2017 ◽  
Vol 16 (2) ◽  
Author(s):  
M.E.A. Borba ◽  
G.M. Maciel ◽  
E.F. Fraga Júnior ◽  
C.S. Machado Júnior ◽  
G.R. Marquez ◽  
...  

2000 ◽  
Vol 68 (2) ◽  
pp. 133-142 ◽  
Author(s):  
D.J Collino ◽  
J.L Dardanelli ◽  
R Sereno ◽  
R.W Racca

2014 ◽  
Vol 94 (2) ◽  
pp. 303-310 ◽  
Author(s):  
Olanike Aladenola ◽  
Chandra Madramootoo

Aladenola, O. and Madramootoo, C. 2014. Response of greenhouse-grown bell pepper (Capsicum annuum L.) to variable irrigation. Can. J. Plant Sci. 94: 303–310. In order to optimize water use in bell pepper production information about the appropriate irrigation water applications and agronomic and physiological response to mild and severe water stress is necessary. Different water applications were tested on yield, quality and water stress threshold of greenhouse-grown bell pepper (Capsicum annuum L.) cultivar Red Knight in 2011 and 2012 on the Macdonald Campus of McGill University, Ste Anne De Bellevue, QC. The study was carried out on a soil substrate in the greenhouse. Irrigation was scheduled with four treatments:120% (T1), 100% (T2), 80% (T3), and 40% (T4) replenishment of crop evapotranspiration in a completely randomized design. The highest marketable yield, water use efficiency and irrigation water use efficiency were obtained with T1 in both years. T1 received 20% more water than T2 to produce 23% more marketable yield than T2. Fruit total soluble solids content was highest in T4, and smallest in T1. The mean crop water stress index (CWSI) of the irrigation treatments ranged between 0.08 and 1.18. Leaf stomatal conductance of bell pepper was 75 to 80% lower in T4 than in T1. Regression obtained between stomatal conductance and CWSI resulted in a polynomial curve with coefficients of determination of 0.88 and 0.97 in 2011 and 2012, respectively. The result from this study indicate that the yield derived justifies the use of an extra quantity of water. Information from this study will help water regulators to make appropriate decision about water to be allocated for greenhouse production of bell pepper.


Sign in / Sign up

Export Citation Format

Share Document